Final Magnetic Moment0.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom-2.887 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.391 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density3.62 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToSiO2 |
Band Gap4.585 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinPn3m [224] |
HallP 4n 2 3 1n |
Point Groupm3m |
Crystal Systemcubic |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
C (mp-48) | <1 0 0> | <1 0 0> | 58.0 |
C (mp-48) | <1 0 1> | <1 0 0> | 217.4 |
C (mp-48) | <1 1 1> | <1 0 0> | 333.4 |
LaAlO3 (mp-2920) | <0 0 1> | <1 1 1> | 25.1 |
LaAlO3 (mp-2920) | <1 0 0> | <1 1 0> | 143.5 |
AlN (mp-661) | <1 0 0> | <1 1 0> | 143.5 |
AlN (mp-661) | <1 0 1> | <1 0 0> | 333.4 |
AlN (mp-661) | <1 1 0> | <1 1 0> | 82.0 |
AlN (mp-661) | <1 1 1> | <1 1 1> | 200.8 |
CeO2 (mp-20194) | <1 0 0> | <1 0 0> | 29.0 |
CeO2 (mp-20194) | <1 1 1> | <1 0 0> | 260.9 |
GaAs (mp-2534) | <1 0 0> | <1 0 0> | 130.4 |
GaAs (mp-2534) | <1 1 0> | <1 1 0> | 184.5 |
GaAs (mp-2534) | <1 1 1> | <1 1 1> | 175.7 |
BaF2 (mp-1029) | <1 0 0> | <1 0 0> | 188.4 |
BaF2 (mp-1029) | <1 1 0> | <1 1 0> | 164.0 |
SiO2 (mp-6930) | <1 0 0> | <1 1 0> | 82.0 |
SiO2 (mp-6930) | <1 0 1> | <1 0 0> | 318.9 |
SiO2 (mp-6930) | <1 1 0> | <1 1 0> | 143.5 |
SiO2 (mp-6930) | <1 1 1> | <1 1 0> | 164.0 |
DyScO3 (mp-31120) | <0 0 1> | <1 1 0> | 61.5 |
DyScO3 (mp-31120) | <0 1 0> | <1 1 1> | 301.3 |
DyScO3 (mp-31120) | <0 1 1> | <1 0 0> | 260.9 |
DyScO3 (mp-31120) | <1 1 0> | <1 0 0> | 130.4 |
InAs (mp-20305) | <1 1 1> | <1 1 0> | 328.0 |
ZnSe (mp-1190) | <1 1 1> | <1 1 1> | 175.7 |
KTaO3 (mp-3614) | <1 0 0> | <1 0 0> | 130.4 |
InP (mp-20351) | <1 1 1> | <1 1 1> | 175.7 |
C (mp-48) | <0 0 1> | <1 1 1> | 100.4 |
C (mp-48) | <1 1 0> | <1 1 0> | 164.0 |
LaAlO3 (mp-2920) | <1 0 1> | <1 1 1> | 75.3 |
LaAlO3 (mp-2920) | <1 1 0> | <1 1 0> | 123.0 |
LaAlO3 (mp-2920) | <1 1 1> | <1 1 1> | 125.5 |
AlN (mp-661) | <0 0 1> | <1 1 1> | 25.1 |
CeO2 (mp-20194) | <1 1 0> | <1 1 0> | 41.0 |
SiO2 (mp-6930) | <0 0 1> | <1 1 1> | 301.3 |
KCl (mp-23193) | <1 1 0> | <1 1 0> | 164.0 |
DyScO3 (mp-31120) | <1 0 0> | <1 1 0> | 184.5 |
DyScO3 (mp-31120) | <1 0 1> | <1 0 0> | 217.4 |
DyScO3 (mp-31120) | <1 1 1> | <1 0 0> | 275.4 |
InAs (mp-20305) | <1 0 0> | <1 0 0> | 72.5 |
InAs (mp-20305) | <1 1 0> | <1 1 0> | 164.0 |
ZnSe (mp-1190) | <1 0 0> | <1 0 0> | 130.4 |
ZnSe (mp-1190) | <1 1 0> | <1 1 0> | 184.5 |
KTaO3 (mp-3614) | <1 1 0> | <1 1 0> | 184.5 |
KTaO3 (mp-3614) | <1 1 1> | <1 1 1> | 326.4 |
InP (mp-20351) | <1 0 0> | <1 0 0> | 72.5 |
Te2W (mp-22693) | <0 0 1> | <1 1 1> | 200.8 |
Te2W (mp-22693) | <0 1 0> | <1 1 0> | 164.0 |
Te2W (mp-22693) | <1 0 0> | <1 1 0> | 287.0 |
Stiffness Tensor Cij (GPa) |
|||||
---|---|---|---|---|---|
349 | 226 | 226 | 0 | 0 | 0 |
226 | 349 | 226 | 0 | 0 | 0 |
226 | 226 | 349 | 0 | 0 | 0 |
0 | 0 | 0 | 232 | 0 | 0 |
0 | 0 | 0 | 0 | 232 | 0 |
0 | 0 | 0 | 0 | 0 | 232 |
Compliance Tensor Sij (10-12Pa-1) |
|||||
---|---|---|---|---|---|
5.8 | -2.3 | -2.3 | 0.0 | -0.0 | -0.0 |
-2.3 | 5.8 | -2.3 | -0.0 | 0.0 | 0.0 |
-2.3 | -2.3 | 5.8 | 0.0 | 0.0 | 0.0 |
0.0 | -0.0 | 0.0 | 4.3 | -0.0 | -0.0 |
-0.0 | 0.0 | 0.0 | -0.0 | 4.3 | -0.0 |
-0.0 | 0.0 | 0.0 | -0.0 | -0.0 | 4.3 |
Shear Modulus GV164 GPa |
Bulk Modulus KV267 GPa |
Shear Modulus GR110 GPa |
Bulk Modulus KR267 GPa |
Shear Modulus GVRH137 GPa |
Bulk Modulus KVRH267 GPa |
Elastic Anisotropy2.44 |
Poisson's Ratio0.28 |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
Ag3AuS2 (mp-34460) | 0.4461 | 0.000 | 3 |
Be(CN)2 (mp-35687) | 0.7098 | 0.226 | 3 |
AlPO4 (mp-545974) | 0.4493 | 0.011 | 3 |
Mg2ZnN2 (mp-1029265) | 0.7091 | 1.954 | 3 |
ZnSO4 (mp-545756) | 0.6947 | 0.038 | 3 |
CuCSN (mp-672285) | 0.7298 | 0.157 | 4 |
CuCSN (mp-559044) | 0.7247 | 0.157 | 4 |
Au2S (mp-947) | 0.0115 | 0.000 | 2 |
PtO2 (mp-20119) | 0.0115 | 0.794 | 2 |
Cs2Se (mp-1011697) | 0.0115 | 0.306 | 2 |
Cu2O (mp-361) | 0.0115 | 0.000 | 2 |
Pb2O (mp-551685) | 0.0115 | 0.356 | 2 |
C (mp-1095534) | 0.6850 | 1.121 | 1 |
Explore more synthesis descriptions for materials of composition SiO2.
Text computed by synthesisproject.org.
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Si O |
Final Energy/Atom-7.5248 eV |
Corrected Energy-47.9578 eV
-47.9578 eV = -45.1486 eV (uncorrected energy) - 2.8092 eV (MP Anion Correction)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)