material

ScF3

ID:

mp-10694

DOI:

10.17188/1187296


Tags: Scandium trifluoride Scandium fluoride

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-4.320 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
2.51 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
6.073 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Pm3m [221]
Hall
-P 4 2 3
Point Group
m3m
Crystal System
cubic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
GaSb (mp-1156) <1 1 1> <1 1 1> 0.000 200.8
WS2 (mp-224) <0 0 1> <1 1 1> 0.001 114.7
MoS2 (mp-1434) <0 0 1> <1 1 1> 0.001 114.7
CdSe (mp-2691) <1 1 1> <1 1 1> 0.001 200.8
GaP (mp-2490) <1 1 0> <1 1 0> 0.001 257.6
GaAs (mp-2534) <1 1 0> <1 1 0> 0.002 46.8
GaAs (mp-2534) <1 0 0> <1 0 0> 0.002 33.1
CaF2 (mp-2741) <1 1 0> <1 1 0> 0.002 257.6
MoSe2 (mp-1634) <0 0 1> <1 1 1> 0.003 28.7
WSe2 (mp-1821) <0 0 1> <1 1 1> 0.003 28.7
Ge (mp-32) <1 1 0> <1 1 0> 0.004 46.8
Ge (mp-32) <1 0 0> <1 0 0> 0.005 33.1
CeO2 (mp-20194) <1 0 0> <1 0 0> 0.005 149.1
PbSe (mp-2201) <1 1 1> <1 1 1> 0.006 200.8
Si (mp-149) <1 0 0> <1 0 0> 0.007 149.1
InSb (mp-20012) <1 1 0> <1 1 0> 0.007 187.4
ZnSe (mp-1190) <1 1 0> <1 1 0> 0.011 46.8
ZnSe (mp-1190) <1 0 0> <1 0 0> 0.013 33.1
CdTe (mp-406) <1 1 0> <1 1 0> 0.013 187.4
Mg (mp-153) <0 0 1> <1 1 1> 0.015 114.7
WSe2 (mp-1821) <1 0 1> <1 1 0> 0.018 304.5
LiF (mp-1138) <1 1 1> <1 1 1> 0.023 28.7
LiF (mp-1138) <1 1 0> <1 1 0> 0.025 23.4
NdGaO3 (mp-3196) <0 1 0> <1 1 0> 0.026 257.6
CdS (mp-672) <1 0 1> <1 1 0> 0.027 164.0
MgAl2O4 (mp-3536) <1 1 1> <1 1 1> 0.030 114.7
LiF (mp-1138) <1 0 0> <1 0 0> 0.030 16.6
CdS (mp-672) <0 0 1> <1 1 1> 0.031 200.8
DyScO3 (mp-31120) <0 0 1> <1 1 0> 0.032 93.7
MgAl2O4 (mp-3536) <1 1 0> <1 1 0> 0.032 93.7
MgAl2O4 (mp-3536) <1 0 0> <1 0 0> 0.040 66.2
Ni (mp-23) <1 1 1> <1 1 1> 0.043 86.1
MoSe2 (mp-1634) <1 1 0> <1 0 0> 0.045 265.0
Ni (mp-23) <1 1 0> <1 1 0> 0.046 70.3
TeO2 (mp-2125) <1 0 0> <1 1 0> 0.047 70.3
LiAlO2 (mp-3427) <1 1 1> <1 0 0> 0.047 215.3
ZnTe (mp-2176) <1 1 1> <1 1 1> 0.051 200.8
NdGaO3 (mp-3196) <0 1 1> <1 0 0> 0.054 314.7
InAs (mp-20305) <1 1 1> <1 1 1> 0.063 200.8
SiO2 (mp-6930) <1 1 1> <1 1 0> 0.071 210.8
WSe2 (mp-1821) <1 0 0> <1 1 0> 0.092 304.5
MoSe2 (mp-1634) <1 0 0> <1 1 0> 0.096 304.5
TiO2 (mp-2657) <1 0 1> <1 1 0> 0.096 234.2
TbScO3 (mp-31119) <0 0 1> <1 1 0> 0.097 93.7
KCl (mp-23193) <1 0 0> <1 0 0> 0.097 82.8
MgF2 (mp-1249) <1 1 0> <1 1 0> 0.099 187.4
SiO2 (mp-6930) <0 0 1> <1 1 1> 0.102 86.1
LaF3 (mp-905) <1 0 1> <1 0 0> 0.109 281.5
Cu (mp-30) <1 0 0> <1 0 0> 0.109 66.2
GaN (mp-804) <0 0 1> <1 1 1> 0.112 114.7
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
232 17 17 0 0 0
17 232 17 0 0 0
17 17 232 0 0 0
0 0 0 18 0 0
0 0 0 0 18 0
0 0 0 0 0 18
Compliance Tensor Sij (10-12Pa-1)
4.3 -0.3 -0.3 0 0 0
-0.3 4.3 -0.3 0 0 0
-0.3 -0.3 4.3 0 0 0
0 0 0 54.8 0 0
0 0 0 0 54.8 0
0 0 0 0 0 54.8
Shear Modulus GV
54 GPa
Bulk Modulus KV
89 GPa
Shear Modulus GR
27 GPa
Bulk Modulus KR
89 GPa
Shear Modulus GVRH
41 GPa
Bulk Modulus KVRH
89 GPa
Elastic Anisotropy
4.89
Poisson's Ratio
0.30

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
2.23 -0.00 -0.00
-0.00 2.23 -0.00
-0.00 -0.00 2.24
Dielectric Tensor εij (total)
8.35 0.00 -0.00
0.00 8.35 0.00
-0.00 0.00 8.36
Polycrystalline dielectric constant εpoly
(electronic contribution)
2.23
Polycrystalline dielectric constant εpoly
(total)
8.36
Refractive Index n
1.49
Potentially ferroelectric?
False

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
20
U Values
--
Pseudopotentials
VASP PAW: F Sc_sv
Final Energy/Atom
-6.9683 eV
Corrected Energy
-27.8734 eV
-27.8734 eV = -27.8734 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
8.90 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
9.27 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
10.99 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
11.36 eV
derivative discontinuity
functional
GLLB-SC
2.09 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 30215
  • 77071
  • 261067
  • 261068
  • 261069
  • 261070
  • 261071
  • 261072
  • 261073
  • 261074
  • 261075
  • 261076
  • 261077
  • 261078
  • 261079
  • 261080
  • 261081
  • 261082
  • 261083
  • 261084
  • 261085
  • 261086
  • 261087
  • 261088
  • 261089
  • 261090
  • 261091
  • 261092
  • 261093
  • 261094
  • 261095

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)