material

ScAgO2

ID:

mp-11022

DOI:

10.17188/1187529


Tags: Silver scandium oxide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-2.640 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.39 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
2.115 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P63/mmc [194]
Hall
-P 6c 2c
Point Group
6/mmm
Crystal System
hexagonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Ge (mp-32) <1 1 1> <0 0 1> 0.002 172.9
LaAlO3 (mp-2920) <1 0 1> <0 0 1> 0.007 227.5
NdGaO3 (mp-3196) <1 0 0> <0 0 1> 0.008 218.4
CdTe (mp-406) <1 1 1> <0 0 1> 0.009 227.5
Ni (mp-23) <1 1 1> <0 0 1> 0.010 63.7
KCl (mp-23193) <1 1 1> <0 0 1> 0.013 282.0
InSb (mp-20012) <1 1 1> <0 0 1> 0.015 227.5
LiGaO2 (mp-5854) <1 1 0> <0 0 1> 0.020 145.6
GaAs (mp-2534) <1 1 1> <0 0 1> 0.021 172.9
AlN (mp-661) <1 0 1> <1 0 1> 0.040 124.8
ZnSe (mp-1190) <1 1 1> <0 0 1> 0.045 172.9
AlN (mp-661) <0 0 1> <0 0 1> 0.050 109.2
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.053 218.4
BaF2 (mp-1029) <1 0 0> <0 0 1> 0.069 318.4
SiC (mp-7631) <0 0 1> <0 0 1> 0.087 109.2
SiC (mp-11714) <0 0 1> <0 0 1> 0.095 109.2
GaN (mp-804) <1 1 1> <0 0 1> 0.097 154.7
GaN (mp-804) <1 1 0> <0 0 1> 0.103 145.6
SrTiO3 (mp-4651) <1 0 1> <0 0 1> 0.109 54.6
Ag (mp-124) <1 1 1> <0 0 1> 0.112 118.3
C (mp-48) <0 0 1> <0 0 1> 0.114 36.4
BaTiO3 (mp-5986) <1 0 0> <0 0 1> 0.122 136.5
PbS (mp-21276) <1 1 0> <0 0 1> 0.125 254.7
Bi2Te3 (mp-34202) <0 0 1> <0 0 1> 0.125 118.3
LaF3 (mp-905) <1 1 0> <1 1 0> 0.125 281.2
TePb (mp-19717) <1 1 1> <0 0 1> 0.130 227.5
YAlO3 (mp-3792) <0 0 1> <0 0 1> 0.133 254.7
GaN (mp-804) <0 0 1> <0 0 1> 0.135 9.1
TePb (mp-19717) <1 1 0> <0 0 1> 0.143 182.0
KCl (mp-23193) <1 1 0> <0 0 1> 0.146 291.1
NdGaO3 (mp-3196) <0 0 1> <0 0 1> 0.148 91.0
Ga2O3 (mp-886) <1 1 1> <0 0 1> 0.151 254.7
LiGaO2 (mp-5854) <1 1 1> <0 0 1> 0.154 282.0
LaF3 (mp-905) <1 0 0> <0 0 1> 0.157 318.4
SiO2 (mp-6930) <1 1 1> <0 0 1> 0.168 318.4
CdWO4 (mp-19387) <1 1 0> <0 0 1> 0.171 291.1
MgF2 (mp-1249) <1 0 1> <0 0 1> 0.181 182.0
KCl (mp-23193) <1 0 0> <0 0 1> 0.189 291.1
MoS2 (mp-1434) <1 0 1> <1 0 1> 0.191 208.0
ZrO2 (mp-2858) <1 0 0> <0 0 1> 0.191 254.7
C (mp-48) <1 1 1> <1 0 0> 0.203 202.9
SiC (mp-11714) <1 1 1> <1 0 0> 0.204 162.4
Au (mp-81) <1 1 1> <0 0 1> 0.213 118.3
TeO2 (mp-2125) <0 0 1> <0 0 1> 0.216 163.8
WS2 (mp-224) <1 1 0> <0 0 1> 0.223 236.5
SrTiO3 (mp-4651) <1 0 0> <0 0 1> 0.224 218.4
CdS (mp-672) <1 1 1> <0 0 1> 0.226 318.4
PbS (mp-21276) <1 1 1> <0 0 1> 0.227 63.7
CsI (mp-614603) <1 1 1> <0 0 1> 0.232 109.2
MgO (mp-1265) <1 1 0> <0 0 1> 0.235 182.0
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
196 62 76 0 0 0
62 196 76 0 0 0
76 76 319 0 0 0
0 0 0 13 0 0
0 0 0 0 13 0
0 0 0 0 0 67
Compliance Tensor Sij (10-12Pa-1)
6 -1.5 -1.1 0 0 0
-1.5 6 -1.1 0 0 0
-1.1 -1.1 3.6 0 0 0
0 0 0 76.7 0 0
0 0 0 0 76.7 0
0 0 0 0 0 14.9
Shear Modulus GV
52 GPa
Bulk Modulus KV
127 GPa
Shear Modulus GR
26 GPa
Bulk Modulus KR
120 GPa
Shear Modulus GVRH
39 GPa
Bulk Modulus KVRH
123 GPa
Elastic Anisotropy
5.10
Poisson's Ratio
0.36

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
5.96 -0.00 0.00
-0.00 5.96 0.00
0.00 0.00 5.60
Dielectric Tensor εij (total)
16.09 -0.00 0.00
-0.00 16.09 0.00
0.00 0.00 9.26
Polycrystalline dielectric constant εpoly
(electronic contribution)
5.84
Polycrystalline dielectric constant εpoly
(total)
13.81
Refractive Index n
2.42
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
28
U Values
--
Pseudopotentials
VASP PAW: O Sc_sv Ag
Final Energy/Atom
-7.0471 eV
Corrected Energy
-59.1863 eV
-59.1863 eV = -56.3771 eV (uncorrected energy) - 2.8092 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
2.58 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
3.01 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
3.60 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
4.03 eV
derivative discontinuity
functional
GLLB-SC
1.02 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 95668

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)