material

YAgTe2

ID:

mp-12903

DOI:

10.17188/1189257


Tags: Yttrium silver telluride (1/1/2) Yttrium silver telluride

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.928 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
6.23 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.899 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P421m [113]
Hall
P 4 2ab
Point Group
42m
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Al (mp-134) <1 0 0> <1 0 1> 0.003 244.1
KP(HO2)2 (mp-23959) <0 1 0> <0 0 1> 0.009 152.4
TbScO3 (mp-31119) <1 1 0> <0 0 1> 0.011 254.0
KP(HO2)2 (mp-23959) <0 0 1> <0 0 1> 0.012 152.4
C (mp-66) <1 0 0> <0 0 1> 0.017 50.8
DyScO3 (mp-31120) <1 1 0> <0 0 1> 0.020 254.0
C (mp-66) <1 1 0> <1 1 0> 0.026 143.5
WS2 (mp-224) <1 0 0> <1 0 0> 0.026 135.3
KCl (mp-23193) <1 0 0> <1 0 0> 0.026 202.9
SiO2 (mp-6930) <1 0 0> <1 1 0> 0.036 334.8
ZnO (mp-2133) <1 0 0> <1 0 1> 0.039 122.0
CdWO4 (mp-19387) <0 1 1> <1 0 0> 0.046 202.9
Te2Mo (mp-602) <0 0 1> <1 0 0> 0.046 304.4
MgO (mp-1265) <1 0 0> <1 0 1> 0.049 183.1
GdScO3 (mp-5690) <1 1 0> <0 0 1> 0.054 254.0
AlN (mp-661) <1 0 0> <0 0 1> 0.055 254.0
PbS (mp-21276) <1 1 0> <1 0 1> 0.061 305.1
AlN (mp-661) <1 0 1> <1 0 0> 0.062 270.6
MgF2 (mp-1249) <1 1 1> <1 1 0> 0.067 239.1
MgF2 (mp-1249) <1 0 0> <1 0 0> 0.071 101.5
TiO2 (mp-2657) <1 1 0> <1 0 0> 0.072 236.7
LiGaO2 (mp-5854) <0 0 1> <1 1 0> 0.081 334.8
Al2O3 (mp-1143) <0 0 1> <1 0 0> 0.089 236.7
Mg (mp-153) <1 0 0> <1 0 1> 0.091 305.1
NdGaO3 (mp-3196) <1 0 1> <1 0 0> 0.100 270.6
SiC (mp-8062) <1 0 0> <0 0 1> 0.143 254.0
SiO2 (mp-6930) <0 0 1> <1 0 1> 0.143 305.1
InP (mp-20351) <1 1 0> <1 0 1> 0.144 305.1
SiO2 (mp-6930) <1 0 1> <1 1 0> 0.147 143.5
LiGaO2 (mp-5854) <0 1 1> <0 0 1> 0.147 254.0
BaTiO3 (mp-5986) <1 1 1> <0 0 1> 0.149 254.0
Te2W (mp-22693) <0 1 1> <1 0 0> 0.152 236.7
GaN (mp-804) <1 0 1> <1 0 0> 0.160 304.4
AlN (mp-661) <0 0 1> <1 1 0> 0.164 334.8
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.166 254.0
DyScO3 (mp-31120) <0 0 1> <1 0 0> 0.176 338.2
ZnO (mp-2133) <0 0 1> <1 0 0> 0.180 101.5
NaCl (mp-22862) <1 0 0> <0 0 1> 0.181 254.0
SrTiO3 (mp-4651) <1 0 1> <1 0 0> 0.182 270.6
Ga2O3 (mp-886) <1 0 0> <1 0 0> 0.189 202.9
SiC (mp-11714) <1 0 0> <1 1 0> 0.193 95.7
TiO2 (mp-2657) <1 0 0> <1 0 0> 0.194 169.1
YVO4 (mp-19133) <1 0 0> <1 0 0> 0.197 135.3
Mg (mp-153) <1 0 1> <1 0 0> 0.201 304.4
GaN (mp-804) <0 0 1> <1 0 0> 0.202 135.3
ZrO2 (mp-2858) <0 0 1> <1 0 0> 0.207 169.1
ZnSe (mp-1190) <1 1 0> <1 1 1> 0.216 139.5
AlN (mp-661) <1 1 1> <1 1 0> 0.219 334.8
MgF2 (mp-1249) <0 0 1> <1 0 0> 0.225 67.6
GaAs (mp-2534) <1 1 0> <1 1 1> 0.226 139.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
54 34 34 0 0 0
34 62 30 0 0 0
34 30 62 0 0 0
0 0 0 32 0 0
0 0 0 0 23 0
0 0 0 0 0 23
Compliance Tensor Sij (10-12Pa-1)
33.8 -12.4 -12.4 0 0 0
-12.4 25.6 -5.7 0 0 0
-12.4 -5.7 25.6 0 0 0
0 0 0 31 0 0
0 0 0 0 42.7 0
0 0 0 0 0 42.7
Shear Modulus GV
21 GPa
Bulk Modulus KV
41 GPa
Shear Modulus GR
18 GPa
Bulk Modulus KR
41 GPa
Shear Modulus GVRH
20 GPa
Bulk Modulus KVRH
41 GPa
Elastic Anisotropy
0.74
Poisson's Ratio
0.29

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 -0.13606 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.13606 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.67857
Piezoelectric Modulus ‖eijmax
0.18296 C/m2
Crystallographic Direction vmax
1.00000
1.00000
1.00000

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
24
U Values
--
Pseudopotentials
VASP PAW: Y_sv Ag Te
Final Energy/Atom
-4.8242 eV
Corrected Energy
-38.5933 eV
-38.5933 eV = -38.5933 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.16 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.16 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.66 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.66 eV
derivative discontinuity
functional
GLLB-SC
0.50 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 154792
  • 605920

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)