material

ScAgSe2

ID:

mp-12908

DOI:

10.17188/1189261


Tags: Scandium silver selenide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-1.093 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.82 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.680 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P3m1 [164]
Hall
-P 3 2"
Point Group
3m
Crystal System
trigonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
KTaO3 (mp-3614) <1 1 1> <0 0 1> 0.001 253.6
Al (mp-134) <1 1 1> <0 0 1> 0.004 253.6
YAlO3 (mp-3792) <1 0 0> <1 0 1> 0.004 322.1
SrTiO3 (mp-4651) <1 1 1> <1 0 0> 0.005 208.5
KCl (mp-23193) <1 1 1> <0 0 1> 0.012 213.6
GaSe (mp-1943) <1 1 0> <1 0 0> 0.014 234.5
AlN (mp-661) <0 0 1> <0 0 1> 0.015 160.2
Ge (mp-32) <1 1 1> <0 0 1> 0.015 173.5
LiTaO3 (mp-3666) <0 0 1> <0 0 1> 0.016 93.4
CsI (mp-614603) <1 1 0> <1 0 0> 0.018 260.6
LiNbO3 (mp-3731) <1 0 1> <1 0 1> 0.028 234.2
YAlO3 (mp-3792) <0 0 1> <1 1 0> 0.028 225.7
MgO (mp-1265) <1 1 1> <0 0 1> 0.028 93.4
NdGaO3 (mp-3196) <0 1 0> <0 0 1> 0.028 213.6
SrTiO3 (mp-4651) <1 1 0> <1 0 0> 0.029 312.7
GaN (mp-804) <1 1 0> <1 1 1> 0.035 235.3
C (mp-48) <1 1 1> <1 0 1> 0.041 234.2
Au (mp-81) <1 0 0> <0 0 1> 0.043 280.3
TiO2 (mp-2657) <1 1 1> <1 0 0> 0.043 234.5
Cu (mp-30) <1 1 0> <1 0 0> 0.044 312.7
TiO2 (mp-2657) <0 0 1> <1 0 0> 0.045 130.3
LaF3 (mp-905) <1 0 0> <1 0 1> 0.047 322.1
SiC (mp-11714) <1 0 0> <1 0 0> 0.047 156.4
SiO2 (mp-6930) <1 1 0> <0 0 1> 0.048 240.3
GaAs (mp-2534) <1 1 1> <0 0 1> 0.048 173.5
SiC (mp-11714) <1 0 1> <1 1 0> 0.053 225.7
TbScO3 (mp-31119) <0 1 1> <1 1 0> 0.056 270.8
TiO2 (mp-390) <0 0 1> <1 1 1> 0.058 188.3
TiO2 (mp-2657) <1 1 0> <1 0 0> 0.059 78.2
TePb (mp-19717) <1 0 0> <1 0 0> 0.064 130.3
LiNbO3 (mp-3731) <0 0 1> <0 0 1> 0.064 93.4
Te2Mo (mp-602) <1 0 1> <0 0 1> 0.066 280.3
MgF2 (mp-1249) <1 0 0> <0 0 1> 0.074 160.2
SrTiO3 (mp-4651) <0 0 1> <1 0 0> 0.075 156.4
ZnSe (mp-1190) <1 1 1> <0 0 1> 0.079 173.5
AlN (mp-661) <1 1 1> <1 1 0> 0.079 225.7
DyScO3 (mp-31120) <1 1 0> <1 0 0> 0.079 312.7
CaF2 (mp-2741) <1 1 1> <0 0 1> 0.083 53.4
InP (mp-20351) <1 1 0> <0 0 1> 0.084 200.2
ZrO2 (mp-2858) <1 0 -1> <0 0 1> 0.085 106.8
GdScO3 (mp-5690) <0 1 1> <1 1 0> 0.086 270.8
GaP (mp-2490) <1 1 0> <0 0 1> 0.089 213.6
Ag (mp-124) <1 0 0> <0 0 1> 0.090 280.3
DyScO3 (mp-31120) <0 1 1> <1 1 0> 0.090 270.8
GaN (mp-804) <1 0 1> <1 0 0> 0.095 208.5
ZnO (mp-2133) <0 0 1> <0 0 1> 0.095 120.1
CaF2 (mp-2741) <1 1 0> <0 0 1> 0.110 213.6
Te2W (mp-22693) <0 1 1> <0 0 1> 0.110 173.5
ZnO (mp-2133) <1 1 0> <1 0 0> 0.111 182.4
LaF3 (mp-905) <1 0 1> <0 0 1> 0.111 213.6
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
99 44 44 -3 0 0
44 99 44 3 0 0
44 44 99 0 0 0
-3 3 0 12 0 0
0 0 0 0 12 -3
0 0 0 0 -3 28
Compliance Tensor Sij (10-12Pa-1)
14.1 -4.5 -4.3 5.2 0 0
-4.5 14.1 -4.3 -5.2 0 0
-4.3 -4.3 13.9 0 0 0
5.2 -5.2 0 86.6 0 0
0 0 0 0 86.6 10.3
0 0 0 0 10.3 37.3
Shear Modulus GV
21 GPa
Bulk Modulus KV
62 GPa
Shear Modulus GR
18 GPa
Bulk Modulus KR
62 GPa
Shear Modulus GVRH
19 GPa
Bulk Modulus KVRH
62 GPa
Elastic Anisotropy
1.07
Poisson's Ratio
0.36

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
12.51 0.00 0.00
0.00 12.51 0.00
0.00 0.00 11.85
Dielectric Tensor εij (total)
33.25 -0.00 0.00
-0.00 33.25 -0.00
0.00 -0.00 19.33
Polycrystalline dielectric constant εpoly
(electronic contribution)
12.29
Polycrystalline dielectric constant εpoly
(total)
28.61
Refractive Index n
3.51
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
35
U Values
--
Pseudopotentials
VASP PAW: Sc_sv Se Ag
Final Energy/Atom
-5.1284 eV
Corrected Energy
-20.5136 eV
-20.5136 eV = -20.5136 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.36 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.94 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.86 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
2.45 eV
derivative discontinuity
functional
GLLB-SC
0.50 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 155115

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)