material

RbAlO2

ID:

mp-14070

DOI:

10.17188/1189918


Tags: Rubidium aluminium oxide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-2.878 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
3.59 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
3.372 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Fd3m [227]
Hall
F 4d 2 3 1d
Point Group
m3m
Crystal System
cubic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Mg (mp-153) <0 0 1> <1 1 1> 0.000 114.0
CdTe (mp-406) <1 1 0> <1 1 0> 0.001 186.2
ZnSe (mp-1190) <1 0 0> <1 0 0> 0.001 65.8
ZnSe (mp-1190) <1 1 0> <1 1 0> 0.001 93.1
InSb (mp-20012) <1 1 0> <1 1 0> 0.003 186.2
Ni (mp-23) <1 1 0> <1 1 0> 0.006 279.4
GaAs (mp-2534) <1 0 0> <1 0 0> 0.010 65.8
GaSe (mp-1943) <0 0 1> <1 1 1> 0.010 114.0
GaAs (mp-2534) <1 1 0> <1 1 0> 0.011 93.1
MoS2 (mp-1434) <0 0 1> <1 1 1> 0.015 114.0
WS2 (mp-224) <0 0 1> <1 1 1> 0.015 114.0
KCl (mp-23193) <1 0 0> <1 0 0> 0.019 329.2
Cu (mp-30) <1 0 0> <1 0 0> 0.024 65.8
YVO4 (mp-19133) <0 0 1> <1 0 0> 0.034 263.4
AlN (mp-661) <1 0 1> <1 0 0> 0.036 197.5
Ge (mp-32) <1 0 0> <1 0 0> 0.039 65.8
Al (mp-134) <1 0 0> <1 0 0> 0.042 65.8
TeO2 (mp-2125) <1 1 0> <1 0 0> 0.042 197.5
C (mp-66) <1 0 0> <1 0 0> 0.042 329.2
Ge (mp-32) <1 1 0> <1 1 0> 0.045 93.1
MgO (mp-1265) <1 0 0> <1 0 0> 0.046 329.2
MgO (mp-1265) <1 1 0> <1 1 0> 0.046 279.4
SiC (mp-8062) <1 0 0> <1 0 0> 0.047 329.2
Al (mp-134) <1 1 0> <1 1 0> 0.048 93.1
Al (mp-134) <1 1 1> <1 1 1> 0.049 114.0
TiO2 (mp-390) <0 0 1> <1 0 0> 0.051 131.7
GdScO3 (mp-5690) <1 0 0> <1 1 0> 0.059 93.1
BN (mp-984) <1 0 1> <1 0 0> 0.059 263.4
TbScO3 (mp-31119) <0 1 0> <1 0 0> 0.068 131.7
TeO2 (mp-2125) <1 0 0> <1 1 0> 0.069 279.4
MgF2 (mp-1249) <1 1 0> <1 1 0> 0.078 186.2
DyScO3 (mp-31120) <0 1 0> <1 0 0> 0.082 131.7
LiF (mp-1138) <1 0 0> <1 0 0> 0.086 65.8
KTaO3 (mp-3614) <1 0 0> <1 0 0> 0.086 65.8
TbScO3 (mp-31119) <1 0 0> <1 1 0> 0.087 93.1
SiO2 (mp-6930) <1 0 1> <1 1 0> 0.090 279.4
LiF (mp-1138) <1 1 0> <1 1 0> 0.098 93.1
KTaO3 (mp-3614) <1 1 0> <1 1 0> 0.099 93.1
MgAl2O4 (mp-3536) <1 0 0> <1 0 0> 0.099 65.8
LiF (mp-1138) <1 1 1> <1 1 1> 0.102 114.0
KTaO3 (mp-3614) <1 1 1> <1 1 1> 0.103 114.0
PbS (mp-21276) <1 0 0> <1 0 0> 0.113 329.2
MgAl2O4 (mp-3536) <1 1 0> <1 1 0> 0.113 93.1
ZnO (mp-2133) <1 0 0> <1 0 0> 0.117 263.4
MgAl2O4 (mp-3536) <1 1 1> <1 1 1> 0.118 114.0
C (mp-48) <1 0 1> <1 0 0> 0.119 263.4
BaTiO3 (mp-5986) <1 0 1> <1 1 0> 0.119 93.1
DyScO3 (mp-31120) <1 0 0> <1 1 0> 0.126 93.1
DyScO3 (mp-31120) <1 0 1> <1 0 0> 0.126 329.2
NaCl (mp-22862) <1 0 0> <1 0 0> 0.132 65.8
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
117 80 80 0 0 0
80 117 80 0 0 0
80 80 117 0 0 0
0 0 0 74 0 0
0 0 0 0 74 0
0 0 0 0 0 74
Compliance Tensor Sij (10-12Pa-1)
19 -7.7 -7.7 0 0 0
-7.7 19 -7.7 0 0 0
-7.7 -7.7 19 0 0 0
0 0 0 13.6 0 0
0 0 0 0 13.6 0
0 0 0 0 0 13.6
Shear Modulus GV
52 GPa
Bulk Modulus KV
92 GPa
Shear Modulus GR
34 GPa
Bulk Modulus KR
92 GPa
Shear Modulus GVRH
43 GPa
Bulk Modulus KVRH
92 GPa
Elastic Anisotropy
2.63
Poisson's Ratio
0.30

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
2.79 -0.00 0.00
-0.00 2.79 0.00
0.00 0.00 2.79
Dielectric Tensor εij (total)
24.01 -0.00 -0.00
-0.00 24.01 -0.00
-0.00 -0.00 24.01
Polycrystalline dielectric constant εpoly
(electronic contribution)
2.79
Polycrystalline dielectric constant εpoly
(total)
24.01
Refractive Index n
1.67
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
28
U Values
--
Pseudopotentials
VASP PAW: O Al Rb_sv
Final Energy/Atom
-6.1731 eV
Corrected Energy
-52.1940 eV
-52.1940 eV = -49.3849 eV (uncorrected energy) - 2.8092 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
5.06 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
5.07 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
7.06 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
7.07 eV
derivative discontinuity
functional
GLLB-SC
2.00 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 28373

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)