material

K2CuAs

ID:

mp-15684

DOI:

10.17188/1191318


Tags: Copper potassium arsenide (1/2/1)

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.354 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
3.15 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
1.067 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Cmcm [63]
Hall
-C 2c 2
Point Group
mmm
Crystal System
orthorhombic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
GaSe (mp-1943) <1 0 0> <0 1 0> 0.002 135.5
InP (mp-20351) <1 1 0> <1 1 0> 0.004 150.2
C (mp-66) <1 1 0> <1 0 0> 0.005 180.0
TiO2 (mp-390) <1 0 1> <0 1 0> 0.010 316.1
BaF2 (mp-1029) <1 1 0> <1 1 0> 0.017 225.3
ZrO2 (mp-2858) <0 1 0> <1 1 0> 0.020 225.3
Au (mp-81) <1 0 0> <0 1 0> 0.021 316.1
Te2Mo (mp-602) <1 0 0> <0 1 0> 0.022 270.9
BaTiO3 (mp-5986) <1 1 1> <0 0 1> 0.027 231.0
Ag (mp-124) <1 1 1> <1 0 0> 0.033 60.0
Ga2O3 (mp-886) <1 0 0> <0 1 0> 0.036 90.3
BaTiO3 (mp-5986) <1 0 0> <1 1 0> 0.039 150.2
Au (mp-81) <1 1 1> <1 0 0> 0.043 60.0
LaAlO3 (mp-2920) <1 0 1> <0 1 0> 0.045 225.8
CdWO4 (mp-19387) <0 1 0> <0 1 1> 0.046 267.8
ZnO (mp-2133) <1 0 0> <1 1 0> 0.046 300.3
TiO2 (mp-2657) <1 1 0> <0 1 0> 0.048 316.1
Cu (mp-30) <1 1 1> <1 0 0> 0.051 180.0
Ag (mp-124) <1 0 0> <0 1 0> 0.051 316.1
AlN (mp-661) <1 1 0> <1 1 0> 0.051 300.3
SiO2 (mp-6930) <1 0 1> <0 1 0> 0.055 316.1
Bi2Te3 (mp-34202) <0 0 1> <0 1 0> 0.056 135.5
BN (mp-984) <1 0 0> <0 0 1> 0.057 77.0
Au (mp-81) <1 1 0> <1 1 0> 0.058 75.1
Te2W (mp-22693) <0 1 0> <0 1 0> 0.058 270.9
PbS (mp-21276) <1 1 0> <1 1 0> 0.067 150.2
PbS (mp-21276) <1 0 0> <1 0 0> 0.069 180.0
C (mp-66) <1 1 1> <1 0 0> 0.069 180.0
TiO2 (mp-390) <1 0 0> <0 1 0> 0.073 225.8
Mg (mp-153) <0 0 1> <0 1 0> 0.074 316.1
Te2W (mp-22693) <0 0 1> <1 1 0> 0.075 225.3
CaCO3 (mp-3953) <0 0 1> <1 0 0> 0.076 180.0
MgAl2O4 (mp-3536) <1 0 0> <0 1 1> 0.076 267.8
YVO4 (mp-19133) <1 1 0> <1 0 1> 0.076 195.2
MoS2 (mp-1434) <0 0 1> <0 1 0> 0.077 316.1
WS2 (mp-224) <0 0 1> <0 1 0> 0.077 316.1
GaN (mp-804) <1 0 1> <0 1 1> 0.079 267.8
SiC (mp-7631) <0 0 1> <0 1 0> 0.080 225.8
GaTe (mp-542812) <1 0 1> <1 1 0> 0.080 300.3
GaSe (mp-1943) <0 0 1> <1 0 0> 0.081 180.0
CdWO4 (mp-19387) <0 0 1> <1 0 0> 0.082 60.0
SiC (mp-11714) <0 0 1> <0 1 0> 0.082 225.8
BN (mp-984) <1 1 0> <0 1 0> 0.082 135.5
Ag (mp-124) <1 1 0> <1 1 0> 0.096 75.1
SiC (mp-11714) <1 0 0> <0 0 1> 0.098 154.0
Ga2O3 (mp-886) <1 1 0> <1 0 0> 0.098 299.9
YAlO3 (mp-3792) <1 1 0> <0 1 0> 0.099 225.8
GaAs (mp-2534) <1 0 0> <0 1 1> 0.099 267.8
KTaO3 (mp-3614) <1 0 0> <1 0 0> 0.102 240.0
Fe2O3 (mp-24972) <0 0 1> <1 0 0> 0.102 180.0
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
40 10 21 0 0 0
10 44 7 0 0 0
21 7 31 0 0 0
0 0 0 7 0 0
0 0 0 0 22 0
0 0 0 0 0 4
Compliance Tensor Sij (10-12Pa-1)
40.1 -4.6 -26.3 0 0 0
-4.6 24 -2.4 0 0 0
-26.3 -2.4 50.6 0 0 0
0 0 0 135.3 0 0
0 0 0 0 45.8 0
0 0 0 0 0 272.6
Shear Modulus GV
12 GPa
Bulk Modulus KV
21 GPa
Shear Modulus GR
8 GPa
Bulk Modulus KR
21 GPa
Shear Modulus GVRH
10 GPa
Bulk Modulus KVRH
21 GPa
Elastic Anisotropy
2.66
Poisson's Ratio
0.30

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
8.70 0.00 0.00
0.00 6.20 0.69
0.00 0.69 5.80
Dielectric Tensor εij (total)
15.06 0.18 0.17
0.18 12.13 2.09
0.17 2.09 10.94
Polycrystalline dielectric constant εpoly
(electronic contribution)
6.90
Polycrystalline dielectric constant εpoly
(total)
12.71
Refractive Index n
2.63
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
36
U Values
--
Pseudopotentials
VASP PAW: K_sv Cu_pv As
Final Energy/Atom
-3.0924 eV
Corrected Energy
-24.7394 eV
-24.7394 eV = -24.7394 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.89 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.96 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
2.88 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
2.95 eV
derivative discontinuity
functional
GLLB-SC
0.99 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 43936

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)