material

Ba(Cu2As)2

ID:

mp-16052

DOI:

10.17188/1191541


Tags: High pressure experimental phase Barium tetracopper(I) arsenide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
-0.326 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.037 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
7.04 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Ba(CuAs)2 + Cu
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
R3m [166]
Hall
-R 3 2"
Point Group
3m
Crystal System
trigonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

X-Ray Diffraction

    Select radiation source:
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
PbSe (mp-2201) <1 1 1> <0 0 1> 0.001 201.2
GaSb (mp-1156) <1 1 1> <0 0 1> 0.001 201.2
WS2 (mp-224) <0 0 1> <0 0 1> 0.006 61.9
MoS2 (mp-1434) <0 0 1> <0 0 1> 0.006 61.9
CdSe (mp-2691) <1 1 1> <0 0 1> 0.006 201.2
LiF (mp-1138) <1 1 1> <0 0 1> 0.012 201.2
SiC (mp-7631) <0 0 1> <0 0 1> 0.013 108.4
Ga2O3 (mp-886) <1 1 0> <0 0 1> 0.014 294.1
GdScO3 (mp-5690) <0 1 0> <0 0 1> 0.014 309.6
SiC (mp-11714) <0 0 1> <0 0 1> 0.016 108.4
SrTiO3 (mp-4651) <1 0 1> <0 0 1> 0.023 108.4
Mg (mp-153) <1 0 1> <0 0 1> 0.025 263.1
InP (mp-20351) <1 0 0> <0 0 1> 0.029 247.7
Mg (mp-153) <1 1 0> <0 0 1> 0.029 232.2
InP (mp-20351) <1 1 1> <0 0 1> 0.031 61.9
Mg (mp-153) <0 0 1> <0 0 1> 0.032 61.9
PbS (mp-21276) <1 1 1> <0 0 1> 0.037 61.9
CdS (mp-672) <1 1 1> <0 0 1> 0.045 263.1
KCl (mp-23193) <1 0 0> <0 0 1> 0.048 325.1
CdS (mp-672) <0 0 1> <0 0 1> 0.056 15.5
C (mp-66) <1 1 1> <0 0 1> 0.058 201.2
SrTiO3 (mp-4651) <1 0 0> <0 0 1> 0.067 309.6
Ge(Bi3O5)4 (mp-23352) <1 1 1> <0 0 1> 0.069 185.8
CaCO3 (mp-3953) <0 0 1> <0 0 1> 0.072 201.2
AlN (mp-661) <1 0 1> <0 0 1> 0.074 232.2
ZnTe (mp-2176) <1 1 1> <0 0 1> 0.085 201.2
LaF3 (mp-905) <1 1 0> <0 0 1> 0.088 92.9
TeO2 (mp-2125) <0 0 1> <0 0 1> 0.088 325.1
TbScO3 (mp-31119) <0 1 0> <0 0 1> 0.089 309.6
CsI (mp-614603) <1 1 1> <0 0 1> 0.090 108.4
GaN (mp-804) <0 0 1> <0 0 1> 0.092 61.9
Cu (mp-30) <1 1 1> <0 0 1> 0.097 201.2
BN (mp-984) <1 0 0> <0 0 1> 0.097 371.5
KCl (mp-23193) <1 1 0> <0 0 1> 0.099 232.2
InAs (mp-20305) <1 1 1> <0 0 1> 0.100 201.2
CdWO4 (mp-19387) <0 1 1> <0 0 1> 0.101 325.1
Au (mp-81) <1 1 0> <0 0 1> 0.112 123.8
TiO2 (mp-2657) <1 1 1> <0 0 1> 0.114 294.1
TiO2 (mp-2657) <1 0 0> <0 0 1> 0.127 139.3
TePb (mp-19717) <1 1 1> <0 0 1> 0.138 294.1
GaN (mp-804) <1 0 1> <0 0 1> 0.156 263.1
TiO2 (mp-2657) <1 1 0> <0 0 1> 0.159 294.1
Cu (mp-30) <1 1 0> <0 0 1> 0.159 263.1
Ag (mp-124) <1 1 0> <0 0 1> 0.162 123.8
Au (mp-81) <1 0 0> <1 0 0> 0.163 104.6
Bi2Se3 (mp-541837) <0 0 1> <0 0 1> 0.165 15.5
DyScO3 (mp-31120) <0 1 0> <0 0 1> 0.169 309.6
CdS (mp-672) <1 0 1> <0 0 1> 0.170 232.2
ZrO2 (mp-2858) <1 0 0> <0 0 1> 0.174 232.2
C (mp-48) <1 0 1> <0 0 1> 0.187 294.1
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
137 60 38 22 -0 -0
60 137 38 -22 0 -0
38 38 126 0 0 -0
22 -22 0 11 -0 0
-0 0 0 -0 11 22
-0 -0 -0 0 22 39
Compliance Tensor Sij (10-12Pa-1)
-38.4 44.1 -1.7 170.3 0 0
44.1 -38.4 -1.7 -170.3 0 0
-1.7 -1.7 9 0 0 0
170.3 -170.3 0 -607.8 0 0
0 0 0 0 -607.8 340.7
0 0 0 0 340.7 -165.1
Shear Modulus GV
30 GPa
Bulk Modulus KV
75 GPa
Shear Modulus GR
-3 GPa
Bulk Modulus KR
74 GPa
Shear Modulus GVRH
13 GPa
Bulk Modulus KVRH
74 GPa
Elastic Anisotropy
-50.13
Poisson's Ratio
0.42

Similar Structures beta feature

Explanation of dissimilarity measure: Documentation.
material dissimilarity Ehull # of elements
K(Cu2As)2 (mp-8608) 0.2735 0.000 3
Sr(Cu2As)2 (mp-10441) 0.2683 0.022 3
Eu(Cu2As)2 (mp-10442) 0.4060 0.000 3
Ca(Cu2As)2 (mp-28006) 0.4949 0.004 3
K(Cu2Sb)2 (mp-1078005) 0.4688 0.000 3
Up to 5 similar elemental, binary, ternary, quaternary, etc. structures displayed (dissimilarity threshold 0.75). Ehull: energy above hull per atom [eV].

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
None
U Values
--
Pseudopotentials
VASP PAW: Cu_pv As Ba_sv
Final Energy/Atom
-4.2738 eV
Corrected Energy
-29.9164 eV
-29.9164 eV = -29.9164 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 89628
Submitted by
User remarks:
  • High pressure experimental phase
  • Barium tetracopper(I) arsenide

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)