material

CsAu

ID:

mp-2667

DOI:

10.17188/1201215


Tags: Cesium gold (1/1) Gold cesium (1/1)

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.327 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
6.51 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
1.024 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Pm3m [221]
Hall
-P 4 2 3
Point Group
m3m
Crystal System
cubic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
SiC (mp-8062) <1 1 1> <1 1 1> 0.000 33.2
SiC (mp-8062) <1 1 0> <1 1 0> 0.000 27.1
SiC (mp-8062) <1 0 0> <1 0 0> 0.000 19.2
C (mp-66) <1 1 0> <1 1 0> 0.000 54.3
TePb (mp-19717) <1 1 0> <1 1 0> 0.000 244.3
TePb (mp-19717) <1 0 0> <1 0 0> 0.000 172.7
SiC (mp-7631) <0 0 1> <1 1 1> 0.001 33.2
TiO2 (mp-2657) <0 0 1> <1 0 0> 0.001 172.7
SiC (mp-11714) <0 0 1> <1 1 1> 0.001 33.2
CdS (mp-672) <1 1 0> <1 1 0> 0.002 298.6
ZnTe (mp-2176) <1 1 0> <1 1 0> 0.002 54.3
SrTiO3 (mp-4651) <1 1 0> <1 0 0> 0.002 249.5
ZnTe (mp-2176) <1 0 0> <1 0 0> 0.002 38.4
InAs (mp-20305) <1 1 0> <1 1 0> 0.003 54.3
InAs (mp-20305) <1 0 0> <1 0 0> 0.003 38.4
CdSe (mp-2691) <1 1 0> <1 1 0> 0.005 54.3
CdSe (mp-2691) <1 0 0> <1 0 0> 0.005 38.4
Te2Mo (mp-602) <1 1 0> <1 1 0> 0.006 190.0
CaCO3 (mp-3953) <1 0 1> <1 1 0> 0.006 271.4
CaCO3 (mp-3953) <1 1 1> <1 0 0> 0.007 153.5
SiC (mp-7631) <1 0 1> <1 1 0> 0.007 190.0
ZrO2 (mp-2858) <1 1 0> <1 1 1> 0.008 199.5
GaSb (mp-1156) <1 1 0> <1 1 0> 0.009 54.3
GaSb (mp-1156) <1 0 0> <1 0 0> 0.009 38.4
Te2Mo (mp-602) <1 1 1> <1 0 0> 0.010 96.0
InP (mp-20351) <1 1 0> <1 1 0> 0.011 298.6
BN (mp-984) <1 1 0> <1 0 0> 0.013 134.4
CaF2 (mp-2741) <1 0 0> <1 0 0> 0.014 153.5
SrTiO3 (mp-4651) <0 0 1> <1 0 0> 0.014 153.5
CsI (mp-614603) <1 0 0> <1 0 0> 0.016 249.5
PbSe (mp-2201) <1 1 0> <1 1 0> 0.016 54.3
PbSe (mp-2201) <1 0 0> <1 0 0> 0.016 38.4
Te2Mo (mp-602) <0 0 1> <1 1 1> 0.017 33.2
CdWO4 (mp-19387) <1 1 0> <1 0 0> 0.017 326.3
Ga2O3 (mp-886) <1 0 -1> <1 1 1> 0.018 232.7
Ge (mp-32) <1 1 1> <1 1 1> 0.020 232.7
SiC (mp-11714) <1 0 0> <1 1 0> 0.023 190.0
MgF2 (mp-1249) <1 0 0> <1 0 0> 0.024 57.6
MgF2 (mp-1249) <1 1 0> <1 1 0> 0.024 81.4
Te2Mo (mp-602) <1 0 1> <1 1 1> 0.025 166.2
LaAlO3 (mp-2920) <1 1 0> <1 1 0> 0.025 244.3
Ge3(BiO3)4 (mp-23560) <1 1 0> <1 1 0> 0.026 162.9
GaP (mp-2490) <1 0 0> <1 0 0> 0.026 153.5
GaN (mp-804) <1 1 1> <1 0 0> 0.027 153.5
ZnO (mp-2133) <1 1 0> <1 1 0> 0.027 244.3
ZnO (mp-2133) <1 0 0> <1 1 0> 0.029 190.0
Ga2O3 (mp-886) <1 1 0> <1 1 0> 0.030 217.2
GaTe (mp-542812) <1 0 0> <1 1 1> 0.030 133.0
LaAlO3 (mp-2920) <1 0 0> <1 0 0> 0.031 287.9
Mg (mp-153) <1 0 1> <1 1 0> 0.034 190.0
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
19 6 6 0 0 0
6 19 6 0 0 0
6 6 19 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6
Compliance Tensor Sij (10-12Pa-1)
62.5 -14.8 -14.8 0 0 0
-14.8 62.5 -14.8 0 0 0
-14.8 -14.8 62.5 0 0 0
0 0 0 165.3 0 0
0 0 0 0 165.3 0
0 0 0 0 0 165.3
Shear Modulus GV
6 GPa
Bulk Modulus KV
10 GPa
Shear Modulus GR
6 GPa
Bulk Modulus KR
10 GPa
Shear Modulus GVRH
6 GPa
Bulk Modulus KVRH
10 GPa
Elastic Anisotropy
0.01
Poisson's Ratio
0.25

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
4.99 0.00 0.00
0.00 4.99 0.00
-0.00 0.00 4.99
Dielectric Tensor εij (total)
10.21 -0.00 0.00
-0.00 10.20 0.00
0.00 0.00 10.21
Polycrystalline dielectric constant εpoly
(electronic contribution)
4.99
Polycrystalline dielectric constant εpoly
(total)
10.21
Refractive Index n
2.23
Potentially ferroelectric?
False

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
20
U Values
--
Pseudopotentials
VASP PAW: Cs_sv Au
Final Energy/Atom
-2.3916 eV
Corrected Energy
-4.7831 eV
-4.7831 eV = -4.7831 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
2.38 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
2.91 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
3.59 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
4.12 eV
derivative discontinuity
functional
GLLB-SC
1.21 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 58427
  • 150971

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)