material

Si3P2Pt

ID:

mp-29157

DOI:

10.17188/1203450


Tags: Platinum silicide phosphide (1/3/2)

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.412 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.43 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.607 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P1 [1]
Hall
P 1
Point Group
1
Crystal System
triclinic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Cu (mp-30) <1 0 0> <1 -1 1> 0.017 170.5
WS2 (mp-224) <0 0 1> <1 1 1> 0.043 150.2
MoS2 (mp-1434) <0 0 1> <1 1 1> 0.043 150.2
ZrO2 (mp-2858) <1 1 1> <1 1 0> 0.046 206.1
LiGaO2 (mp-5854) <0 0 1> <1 0 -1> 0.053 250.9
CdWO4 (mp-19387) <0 1 0> <0 1 1> 0.060 289.9
InAs (mp-20305) <1 0 0> <1 -1 1> 0.067 113.7
Mg (mp-153) <0 0 1> <1 1 1> 0.072 150.2
ZrO2 (mp-2858) <1 0 -1> <0 1 1> 0.080 145.0
SrTiO3 (mp-4651) <1 1 1> <0 1 -1> 0.081 139.1
ZnTe (mp-2176) <1 0 0> <1 -1 1> 0.083 113.7
InP (mp-20351) <1 1 1> <0 0 1> 0.086 308.3
GaP (mp-2490) <1 1 0> <1 0 1> 0.087 213.7
LaF3 (mp-905) <1 0 0> <1 0 0> 0.104 270.0
BaTiO3 (mp-5986) <1 1 1> <1 -1 0> 0.108 199.8
TePb (mp-19717) <1 0 0> <1 -1 1> 0.117 170.5
CaF2 (mp-2741) <1 1 0> <1 0 1> 0.120 213.7
Mg (mp-153) <1 1 0> <0 1 -1> 0.122 231.8
ZrO2 (mp-2858) <1 0 1> <0 0 1> 0.123 128.5
SiC (mp-8062) <1 0 0> <1 -1 1> 0.136 56.8
LiAlO2 (mp-3427) <1 0 1> <0 0 1> 0.141 128.5
SiC (mp-7631) <0 0 1> <1 -1 -1> 0.158 166.5
MgF2 (mp-1249) <1 0 1> <0 1 -1> 0.161 185.4
SiC (mp-11714) <0 0 1> <1 -1 -1> 0.161 166.5
PbS (mp-21276) <1 1 1> <0 0 1> 0.165 308.3
NdGaO3 (mp-3196) <0 1 0> <1 0 1> 0.166 213.7
Si (mp-149) <1 1 0> <1 0 1> 0.169 213.7
LiNbO3 (mp-3731) <0 0 1> <0 0 1> 0.170 282.6
TbScO3 (mp-31119) <0 1 1> <0 1 -1> 0.173 324.5
CeO2 (mp-20194) <1 1 0> <1 0 1> 0.178 213.7
LiTaO3 (mp-3666) <0 0 1> <0 0 1> 0.178 282.6
C (mp-66) <1 1 0> <1 -1 0> 0.180 199.8
Ag (mp-124) <1 0 0> <1 -1 1> 0.200 170.5
Mg (mp-153) <1 1 1> <0 0 1> 0.210 179.8
DyScO3 (mp-31120) <0 1 1> <0 1 -1> 0.211 324.5
C (mp-48) <1 0 0> <0 0 1> 0.219 77.1
Si (mp-149) <1 0 0> <1 0 -1> 0.219 150.5
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.219 154.2
CeO2 (mp-20194) <1 0 0> <1 0 -1> 0.223 150.5
ZnO (mp-2133) <1 1 0> <0 0 1> 0.254 179.8
GaSe (mp-1943) <0 0 1> <1 0 0> 0.254 225.0
GaP (mp-2490) <1 0 0> <1 0 -1> 0.260 150.5
SiC (mp-11714) <1 1 0> <1 1 0> 0.271 274.7
GaN (mp-804) <1 1 1> <1 0 -1> 0.277 150.5
GdScO3 (mp-5690) <0 1 1> <0 1 -1> 0.283 324.5
LiGaO2 (mp-5854) <0 1 1> <1 0 1> 0.296 213.7
CdSe (mp-2691) <1 0 0> <1 -1 1> 0.298 113.7
AlN (mp-661) <1 0 1> <0 1 0> 0.301 198.8
Al2O3 (mp-1143) <1 0 1> <0 1 0> 0.303 198.8
SiC (mp-7631) <1 0 0> <1 -1 -1> 0.305 277.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
210 63 92 5 17 -16
63 248 76 -10 -27 29
92 76 187 12 3 -11
5 -10 12 100 -7 -23
17 -27 3 -7 111 6
-16 29 -11 -23 6 85
Compliance Tensor Sij (10-12Pa-1)
6.5 -1.1 -2.6 0.1 -1.2 1.3
-1.1 5.3 -1.8 0.4 1.7 -2.2
-2.6 -1.8 7.5 -0.7 -0.4 0.9
0.1 0.4 -0.7 10.8 0.6 2.7
-1.2 1.7 -0.4 0.6 9.8 -1.3
1.3 -2.2 0.9 2.7 -1.3 13.6
Shear Modulus GV
87 GPa
Bulk Modulus KV
123 GPa
Shear Modulus GR
74 GPa
Bulk Modulus KR
122 GPa
Shear Modulus GVRH
80 GPa
Bulk Modulus KVRH
123 GPa
Elastic Anisotropy
0.84
Poisson's Ratio
0.23

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.02873 -0.01499 0.04555 0.00891 0.03855 -0.14950
0.03570 -0.43009 0.05017 0.09089 0.01420 0.05607
-0.03686 -0.00043 0.10047 -0.18089 0.09028 0.03983
Piezoelectric Modulus ‖eijmax
0.43266 C/m2
Crystallographic Direction vmax
0.00000
1.00000
-0.14286

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
72
U Values
--
Pseudopotentials
VASP PAW: Si P Pt
Final Energy/Atom
-5.9358 eV
Corrected Energy
-71.2292 eV
-71.2292 eV = -71.2292 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
0.64 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.27 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
0.89 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.52 eV
derivative discontinuity
functional
GLLB-SC
0.25 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 84944

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)