material

GaCuI4

ID:

mp-29403

DOI:

10.17188/1203779


Tags: Copper(I) tetraiodogallate

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.414 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.39 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
1.697 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4 [82]
Hall
I 4
Point Group
4
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Al (mp-134) <1 0 0> <0 0 1> 0.000 211.7
Ge(Bi3O5)4 (mp-23352) <1 0 0> <0 0 1> 0.000 211.7
KTaO3 (mp-3614) <1 0 0> <0 0 1> 0.000 211.7
Cu (mp-30) <1 0 0> <0 0 1> 0.001 169.4
YAlO3 (mp-3792) <0 1 1> <0 0 1> 0.004 338.8
TbScO3 (mp-31119) <1 0 1> <1 0 0> 0.007 223.7
Ni (mp-23) <1 0 0> <0 0 1> 0.007 211.7
DyScO3 (mp-31120) <1 0 1> <1 0 0> 0.008 223.7
YVO4 (mp-19133) <0 0 1> <0 0 1> 0.008 211.7
WSe2 (mp-1821) <0 0 1> <0 0 1> 0.010 338.8
MoSe2 (mp-1634) <0 0 1> <0 0 1> 0.010 338.8
Ni (mp-23) <1 1 1> <1 0 0> 0.011 149.1
InAs (mp-20305) <1 0 0> <0 0 1> 0.011 338.8
ZnO (mp-2133) <0 0 1> <1 0 0> 0.012 74.6
LiF (mp-1138) <1 0 0> <0 0 1> 0.012 84.7
ZnTe (mp-2176) <1 0 0> <0 0 1> 0.013 338.8
KTaO3 (mp-3614) <1 1 1> <1 0 0> 0.013 223.7
BaTiO3 (mp-5986) <0 0 1> <0 0 1> 0.014 211.7
GdScO3 (mp-5690) <1 0 1> <1 0 0> 0.016 223.7
TePb (mp-19717) <1 0 0> <0 0 1> 0.016 42.3
LiGaO2 (mp-5854) <1 0 0> <0 0 1> 0.017 211.7
SiC (mp-8062) <1 0 0> <0 0 1> 0.018 169.4
Al (mp-134) <1 1 1> <1 0 0> 0.018 223.7
C (mp-66) <1 0 0> <0 0 1> 0.018 169.4
Ge (mp-32) <1 0 0> <0 0 1> 0.019 169.4
Ga2O3 (mp-886) <1 0 -1> <0 0 1> 0.023 338.8
Ag (mp-124) <1 0 0> <0 0 1> 0.023 84.7
TiO2 (mp-2657) <0 0 1> <0 0 1> 0.024 42.3
C (mp-66) <1 1 0> <0 0 1> 0.026 338.8
MgF2 (mp-1249) <1 1 1> <0 0 1> 0.027 211.7
CdS (mp-672) <1 1 1> <0 0 1> 0.028 211.7
GaAs (mp-2534) <1 0 0> <0 0 1> 0.028 169.4
ZrO2 (mp-2858) <1 1 -1> <1 1 1> 0.030 227.3
AlN (mp-661) <1 0 1> <1 1 0> 0.030 105.4
LaF3 (mp-905) <1 0 0> <0 0 1> 0.031 211.7
CdSe (mp-2691) <1 0 0> <0 0 1> 0.032 338.8
LiAlO2 (mp-3427) <1 1 1> <0 0 1> 0.034 211.7
ZnSe (mp-1190) <1 0 0> <0 0 1> 0.035 169.4
Au (mp-81) <1 0 0> <0 0 1> 0.036 84.7
GaSb (mp-1156) <1 0 0> <0 0 1> 0.037 338.8
Al2O3 (mp-1143) <1 0 0> <1 0 1> 0.038 257.2
MgF2 (mp-1249) <1 1 0> <1 0 0> 0.040 223.7
Ni (mp-23) <1 1 0> <0 0 1> 0.043 338.8
PbSe (mp-2201) <1 0 0> <0 0 1> 0.044 338.8
MgF2 (mp-1249) <1 0 0> <0 0 1> 0.046 254.1
TePb (mp-19717) <1 1 0> <0 0 1> 0.047 296.4
MgF2 (mp-1249) <1 0 1> <1 1 0> 0.052 105.4
LiGaO2 (mp-5854) <0 1 0> <0 0 1> 0.054 169.4
LiAlO2 (mp-3427) <0 0 1> <0 0 1> 0.055 211.7
Ga2O3 (mp-886) <1 0 0> <0 0 1> 0.056 338.8
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
9 -2 5 0 -0 -0
-2 9 5 -0 0 0
5 5 14 0 -0 0
0 -0 0 7 0 -0
-0 0 -0 0 7 0
-0 0 0 -0 0 4
Compliance Tensor Sij (10-12Pa-1)
165.9 73.3 -85.2 0 0 10.9
73.3 165.9 -85.2 0 0 -10.9
-85.2 -85.2 131.7 0 0 0
0 0 0 142.4 0 0
0 0 0 0 142.4 0
10.9 -10.9 0 0 0 273.7
Shear Modulus GV
5 GPa
Bulk Modulus KV
6 GPa
Shear Modulus GR
4 GPa
Bulk Modulus KR
4 GPa
Shear Modulus GVRH
4 GPa
Bulk Modulus KVRH
5 GPa
Elastic Anisotropy
2.23
Poisson's Ratio
0.13

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 -0.04840 0.02275 0.00000
0.00000 0.00000 0.00000 -0.02275 -0.04840 0.00000
0.01760 -0.01760 0.00000 0.00000 0.00000 0.02768
Piezoelectric Modulus ‖eijmax
0.02039 C/m2
Crystallographic Direction vmax
1.00000
-0.40000
0.80000

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
36
U Values
--
Pseudopotentials
VASP PAW: Cu_pv Ga_d I
Final Energy/Atom
-2.6151 eV
Corrected Energy
-15.6906 eV
-15.6906 eV = -15.6906 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
2.38 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
2.38 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
3.32 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
3.32 eV
derivative discontinuity
functional
GLLB-SC
0.93 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 400817

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)