material

Cs2PdI6

ID:

mp-29806

DOI:

10.17188/1204260


Tags: Dicesium tetraiodopalladate diiodine

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.799 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.008 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.79 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
PdI2 + CsI3 + CsI
Band Gap
0.582 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4/mmm [139]
Hall
-I 4 2
Point Group
4/mmm
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
YAlO3 (mp-3792) <0 1 1> <1 0 1> 0.000 240.2
BN (mp-984) <0 0 1> <1 1 1> 0.009 147.4
C (mp-48) <0 0 1> <1 1 1> 0.010 147.4
Cu (mp-30) <1 0 0> <0 0 1> 0.012 168.7
LiTaO3 (mp-3666) <1 1 0> <0 0 1> 0.025 253.0
LiF (mp-1138) <1 0 0> <0 0 1> 0.025 84.3
SiC (mp-8062) <1 0 0> <1 0 0> 0.028 171.0
MgF2 (mp-1249) <1 1 1> <1 0 1> 0.032 120.1
LaAlO3 (mp-2920) <0 0 1> <0 0 1> 0.033 253.0
Ag (mp-124) <1 0 0> <1 0 0> 0.035 85.5
TiO2 (mp-2657) <0 0 1> <1 0 0> 0.035 85.5
Ni (mp-23) <1 1 1> <1 1 1> 0.037 147.4
TePb (mp-19717) <1 1 0> <1 0 1> 0.039 120.1
LaAlO3 (mp-2920) <1 1 1> <0 0 1> 0.039 253.0
SiC (mp-8062) <1 1 0> <1 0 1> 0.043 240.2
TiO2 (mp-2657) <1 0 1> <0 0 1> 0.044 253.0
SiC (mp-7631) <1 1 0> <1 0 1> 0.045 240.2
Ge (mp-32) <1 0 0> <0 0 1> 0.046 168.7
Au (mp-81) <1 0 0> <1 0 0> 0.055 85.5
LiNbO3 (mp-3731) <1 1 0> <0 0 1> 0.057 253.0
LiTaO3 (mp-3666) <1 1 1> <0 0 1> 0.072 253.0
AlN (mp-661) <1 1 0> <1 0 1> 0.074 240.2
GaAs (mp-2534) <1 0 0> <0 0 1> 0.075 168.7
TePb (mp-19717) <1 0 0> <0 0 1> 0.094 84.3
ZnSe (mp-1190) <1 0 0> <0 0 1> 0.096 168.7
YAlO3 (mp-3792) <0 1 0> <1 0 1> 0.110 120.1
BaTiO3 (mp-5986) <0 0 1> <1 0 1> 0.117 240.2
YAlO3 (mp-3792) <1 0 1> <1 0 1> 0.121 240.2
Te2W (mp-22693) <0 0 1> <1 0 1> 0.125 240.2
LaAlO3 (mp-2920) <1 1 0> <1 0 1> 0.139 120.1
CdWO4 (mp-19387) <0 1 0> <1 0 1> 0.164 240.2
KCl (mp-23193) <1 0 0> <0 0 1> 0.171 84.3
GaSe (mp-1943) <0 0 1> <0 0 1> 0.178 253.0
CdTe (mp-406) <1 1 0> <1 0 1> 0.185 120.1
KCl (mp-23193) <1 1 0> <1 0 1> 0.196 120.1
InSb (mp-20012) <1 1 0> <1 0 1> 0.199 120.1
LiNbO3 (mp-3731) <1 1 1> <1 0 0> 0.259 256.5
NdGaO3 (mp-3196) <1 0 1> <1 0 0> 0.278 256.5
CdTe (mp-406) <1 0 0> <0 0 1> 0.332 84.3
InSb (mp-20012) <1 0 0> <0 0 1> 0.354 84.3
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
15 12 3 0 0 0
12 15 3 0 0 0
3 3 21 -0 0 0
0 0 -0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 9
Compliance Tensor Sij (10-12Pa-1)
182.5 -145.2 -5.3 0 0 0
-145.2 182.5 -5.3 0 0 0
-5.3 -5.3 48.6 0 0 0
0 0 0 518.6 0 0
0 0 0 0 518.6 0
0 0 0 0 0 113.2
Shear Modulus GV
5 GPa
Bulk Modulus KV
10 GPa
Shear Modulus GR
3 GPa
Bulk Modulus KR
10 GPa
Shear Modulus GVRH
4 GPa
Bulk Modulus KVRH
10 GPa
Elastic Anisotropy
4.13
Poisson's Ratio
0.33

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
28
U Values
--
Pseudopotentials
VASP PAW: Pd Cs_sv I
Final Energy/Atom
-2.5769 eV
Corrected Energy
-23.1921 eV
-23.1921 eV = -23.1921 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
0.90 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.08 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.37 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.54 eV
derivative discontinuity
functional
GLLB-SC
0.46 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 280189

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)