material

Y3Al5O12

ID:

mp-3050

DOI:

10.17188/1204905


Tags: High pressure experimental phase Pentaaluminium Triyttrium oxide Triyttrium pentaaluminium dodecaoxide Unnamed_Garnet Triyttrium aluminium oxide Triyttrium dialuminium tris(aluminate) Garnet Pentaaluminium triyttrium oxide Triyttrium pentaaluminium oxide Garnet (YAG)

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
FM
Formation Energy / Atom
-3.698 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.42 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
4.576 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Ia3d [230]
Hall
-I 4bd 2c 3
Point Group
m3m
Crystal System
cubic
We have not yet calculated a detailed bandstructure for this material

X-Ray Diffraction

    Select radiation source:
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
No elastic tensor calculated for this material, so elastic energies not avaialable. Sorting by MCIA instead.
substrate material substrate orientation film orientation MCIA [Å2]
CeO2 (mp-20194) <1 0 0> <1 0 0> 147.1
KTaO3 (mp-3614) <1 0 0> <1 0 0> 147.1
Ag (mp-124) <1 1 0> <1 0 0> 147.1
Al (mp-134) <1 0 0> <1 0 0> 147.1
Fe3O4 (mp-19306) <1 0 0> <1 0 0> 147.1
PbS (mp-21276) <1 0 0> <1 0 0> 147.1
Si (mp-149) <1 0 0> <1 0 0> 147.1
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
304 104 104 0 0 0
104 304 104 0 0 0
104 104 304 0 0 0
0 0 0 104 0 0
0 0 0 0 104 0
0 0 0 0 0 104
Compliance Tensor Sij (10-12Pa-1)
4 -1 -1 0 0 0
-1 4 -1 0 0 0
-1 -1 4 0 0 0
0 0 0 9.6 0 0
0 0 0 0 9.6 0
0 0 0 0 0 9.6
Shear Modulus GV
102 GPa
Bulk Modulus KV
171 GPa
Shear Modulus GR
102 GPa
Bulk Modulus KR
171 GPa
Shear Modulus GVRH
102 GPa
Bulk Modulus KVRH
171 GPa
Elastic Anisotropy
0.00
Poisson's Ratio
0.25

Similar Structures beta feature

Explanation of dissimilarity measure: Documentation.
material dissimilarity Ehull # of elements
Ho3Al5O12 (mp-14388) 0.0297 0.000 3
Tb3Al5O12 (mp-14387) 0.0137 0.000 3
Er3Al5O12 (mp-3384) 0.0476 0.000 3
Dy3Al5O12 (mp-772195) 0.0178 0.000 3
La3Ga5O12 (mp-780561) 0.0669 0.000 3
Na3Li3Ti2F12 (mp-14457) 0.0784 0.000 4
Li3Co2(GeO4)3 (mp-1013807) 0.0787 0.149 4
Li3Ti2(GeO4)3 (mp-1013749) 0.0682 0.084 4
Li3Cr2(GeO4)3 (mp-1012879) 0.0589 0.141 4
Na3Li3Sc2F12 (mp-14023) 0.0580 0.000 4
Ca2YFe4SbO12 (mp-743862) 0.2594 0.002 5
Na2CaSn2(GeO4)3 (mp-677095) 0.2191 0.000 5
Li6Nd6Sb(TeO8)3 (mp-532789) 0.1386 0.011 5
Na2CaTi2(GeO4)3 (mp-695511) 0.2081 0.000 5
CaGd2Zr(GaO3)4 (mp-686296) 0.2422 0.000 5
Ca11YAl15Cr4SiO48 (mp-743917) 0.3577 0.101 6
Ca3Y9Al18CrSiO48 (mp-744910) 0.3683 0.022 6
NaYbTiNbO6F (mp-684861) 0.7412 0.066 6
Ca4Y2Al7Cr2SiO24 (mp-743704) 0.4007 0.050 6
NaEuTiNbO6F (mp-43048) 0.7189 0.012 6
Up to 5 similar elemental, binary, ternary, quaternary, etc. structures displayed (dissimilarity threshold 0.75). Ehull: energy above hull per atom [eV].

Synthesis Descriptions

It is well established that the glassy phase in a -SiAlON material, with addition of Y2O3, can be crystallized to yttrium aluminium garnet (Y3Al5O12-YAG) by a post-sintering heat treatment. The cryst [...]
-SiC powder (UF-15, H.C. Starck., Goslar, Germany) with 4.29wt.% Al2O3 (AKP-30, Sumitomo Chemical Company, New York, NY, USA) and 5.71wt.% Y2O3 (Fine Grade, H.C. Starck, Goslar, Germany) as additiv [...]
chef hat mixing beaker

Explore more synthesis descriptions for materials of composition Y3Al5O12.

Text computed by synthesisproject.org.

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
None
U Values
--
Pseudopotentials
VASP PAW: O Al Y_sv
Final Energy/Atom
-8.1446 eV
Corrected Energy
-685.2796 eV
-685.2796 eV = -651.5696 eV (uncorrected energy) - 33.7099 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 41144
  • 67102
  • 31496
  • 23848
  • 41145
  • 93635
  • 16825
  • 20090
  • 170158
  • 236589
  • 93634
  • 67103
  • 74607
  • 170157
  • 280104
Submitted by
User remarks:
  • High pressure experimental phase
  • Unnamed_Garnet
  • Triyttrium pentaaluminium oxide

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)