Final Magnetic Moment0.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom-0.339 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.000 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density8.30 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToStable |
Band Gap0.000 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinP63/mmc [194] |
Hall-P 6c 2c |
Point Group6/mmm |
Crystal Systemhexagonal |
Topological ClassificationSM*
|
SubclassificationES†
|
Crossing TypeLine
|
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <0 0 1> | 306.2 |
AlN (mp-661) | <0 0 1> | <0 0 1> | 164.9 |
AlN (mp-661) | <1 0 0> | <1 0 0> | 176.0 |
AlN (mp-661) | <1 0 1> | <1 0 1> | 249.5 |
AlN (mp-661) | <1 1 0> | <0 0 1> | 353.3 |
AlN (mp-661) | <1 1 1> | <1 0 1> | 199.6 |
CeO2 (mp-20194) | <1 1 0> | <0 0 1> | 353.3 |
CeO2 (mp-20194) | <1 1 1> | <0 0 1> | 164.9 |
GaAs (mp-2534) | <1 1 0> | <1 1 1> | 319.0 |
GaAs (mp-2534) | <1 1 1> | <0 0 1> | 164.9 |
BaF2 (mp-1029) | <1 0 0> | <0 0 1> | 117.8 |
BaF2 (mp-1029) | <1 1 0> | <1 1 0> | 228.6 |
BaF2 (mp-1029) | <1 1 1> | <0 0 1> | 70.7 |
GaN (mp-804) | <0 0 1> | <0 0 1> | 164.9 |
GaN (mp-804) | <1 0 0> | <1 0 0> | 132.0 |
GaN (mp-804) | <1 0 1> | <1 0 0> | 132.0 |
GaN (mp-804) | <1 1 0> | <1 0 0> | 88.0 |
GaN (mp-804) | <1 1 1> | <1 1 1> | 239.2 |
SiO2 (mp-6930) | <0 0 1> | <0 0 1> | 282.6 |
SiO2 (mp-6930) | <1 0 0> | <0 0 1> | 353.3 |
SiO2 (mp-6930) | <1 0 1> | <0 0 1> | 329.7 |
KCl (mp-23193) | <1 1 0> | <1 1 0> | 228.6 |
KCl (mp-23193) | <1 1 1> | <0 0 1> | 70.7 |
DyScO3 (mp-31120) | <1 0 0> | <1 1 1> | 319.0 |
DyScO3 (mp-31120) | <1 0 1> | <1 0 1> | 349.3 |
DyScO3 (mp-31120) | <1 1 0> | <1 1 1> | 319.0 |
ZnSe (mp-1190) | <1 1 0> | <1 1 1> | 319.0 |
ZnSe (mp-1190) | <1 1 1> | <0 0 1> | 164.9 |
Bi2Te3 (mp-34202) | <0 0 1> | <0 0 1> | 70.7 |
GaSe (mp-1943) | <0 0 1> | <0 0 1> | 164.9 |
KTaO3 (mp-3614) | <1 0 0> | <1 0 1> | 349.3 |
KTaO3 (mp-3614) | <1 1 0> | <1 0 1> | 249.5 |
KTaO3 (mp-3614) | <1 1 1> | <1 0 1> | 349.3 |
BN (mp-984) | <0 0 1> | <0 0 1> | 70.7 |
BN (mp-984) | <1 0 1> | <0 0 1> | 212.0 |
CdS (mp-672) | <0 0 1> | <0 0 1> | 282.6 |
CdS (mp-672) | <1 0 0> | <1 0 0> | 219.9 |
CdS (mp-672) | <1 0 1> | <1 0 0> | 132.0 |
LiNbO3 (mp-3731) | <0 0 1> | <0 0 1> | 23.6 |
LiNbO3 (mp-3731) | <1 0 1> | <1 0 0> | 307.9 |
Bi2Se3 (mp-541837) | <0 0 1> | <0 0 1> | 282.6 |
MoS2 (mp-1434) | <0 0 1> | <0 0 1> | 164.9 |
LiF (mp-1138) | <1 1 0> | <1 0 0> | 263.9 |
LiF (mp-1138) | <1 1 1> | <0 0 1> | 212.0 |
Al (mp-134) | <1 0 0> | <1 0 1> | 349.3 |
Al (mp-134) | <1 1 1> | <1 0 1> | 349.3 |
LiGaO2 (mp-5854) | <0 1 0> | <1 0 1> | 99.8 |
LiGaO2 (mp-5854) | <0 1 1> | <1 0 0> | 44.0 |
LiGaO2 (mp-5854) | <1 0 1> | <1 1 0> | 228.6 |
Te2W (mp-22693) | <0 0 1> | <1 0 1> | 199.6 |
Stiffness Tensor Cij (GPa) |
|||||
---|---|---|---|---|---|
3 | 3 | 17 | 0 | 0 | 0 |
3 | 3 | 17 | 0 | 0 | 0 |
17 | 17 | 144 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 0 |
0 | 0 | 0 | 0 | 0 | -0 |
Compliance Tensor Sij (10-12Pa-1) |
|||||
---|---|---|---|---|---|
-2349 | 2724.7 | -44 | 0 | 0 | 0 |
2724.7 | -2349 | -44 | 0 | 0 | 0 |
-44 | -44 | 17.2 | 0 | 0 | 0 |
0 | 0 | 0 | 101.8 | 0 | 0 |
0 | 0 | 0 | 0 | 101.8 | 0 |
0 | 0 | 0 | 0 | 0 | -10147.4 |
Shear Modulus GV11 GPa |
Bulk Modulus KV25 GPa |
Shear Modulus GR-0 GPa |
Bulk Modulus KR2 GPa |
Shear Modulus GVRH6 GPa |
Bulk Modulus KVRH13 GPa |
Elastic Anisotropy-217.48 |
Poisson's Ratio0.32 |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
LuGeAu (mp-9351) | 0.0554 | 0.000 | 3 |
SrHgPb (mp-1019277) | 0.1672 | 0.000 | 3 |
EuSnHg (mp-1018701) | 0.1851 | 0.000 | 3 |
EuCdSn (mp-1018697) | 0.1772 | 1.479 | 3 |
TmGeAu (mp-1072888) | 0.1781 | 0.000 | 3 |
LiTb(CuP)2 (mp-8220) | 0.5765 | 0.000 | 4 |
LiSm(CuP)2 (mp-973019) | 0.5944 | 0.000 | 4 |
LiYb(CuP)2 (mp-1024988) | 0.6158 | 0.000 | 4 |
LiY(CuP)2 (mp-1018791) | 0.5740 | 0.000 | 4 |
LiCe(CuP)2 (mp-1018784) | 0.6120 | 0.000 | 4 |
SrIn2 (mp-20074) | 0.0964 | 0.000 | 2 |
BaTl2 (mp-30434) | 0.0926 | 0.000 | 2 |
MgGa2 (mp-30651) | 0.0658 | 0.005 | 2 |
YbGa2 (mp-2178) | 0.1043 | 0.000 | 2 |
CaIn2 (mp-21068) | 0.2048 | 0.000 | 2 |
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Sr_sv Tl_d |
Final Energy/Atom-2.4767 eV |
Corrected Energy-14.8602 eV
Uncorrected energy = -14.8602 eV
Corrected energy = -14.8602 eV
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)