material

Al2CdSe4

ID:

mp-3159

DOI:

10.17188/1205769


Tags: Cadmium aluminium selenide Cadmium dialuminium tetraselenide Cadmium dialuminium selenide Chalcopyrite

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.814 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.26 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
2.005 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4 [82]
Hall
I 4
Point Group
4
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
SiC (mp-8062) <1 0 0> <0 0 1> 0.000 172.8
Ag (mp-124) <1 0 0> <0 0 1> 0.001 34.6
TiO2 (mp-2657) <0 0 1> <0 0 1> 0.001 172.8
TePb (mp-19717) <1 0 0> <0 0 1> 0.001 172.8
Al (mp-134) <1 0 0> <0 0 1> 0.002 276.5
PbSe (mp-2201) <1 0 0> <0 0 1> 0.002 311.1
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.003 311.1
Ga2O3 (mp-886) <1 0 0> <1 0 1> 0.005 72.7
AlN (mp-661) <0 0 1> <1 1 0> 0.006 271.5
GaSb (mp-1156) <1 0 0> <0 0 1> 0.009 311.1
CdSe (mp-2691) <1 1 0> <1 0 1> 0.009 218.2
ZrO2 (mp-2858) <0 0 1> <0 0 1> 0.010 138.3
GaSb (mp-1156) <1 1 0> <1 0 1> 0.012 218.2
AlN (mp-661) <1 1 0> <1 1 0> 0.012 271.5
Au (mp-81) <1 0 0> <0 0 1> 0.014 34.6
CsI (mp-614603) <1 0 0> <0 0 1> 0.016 311.1
SiC (mp-8062) <1 1 0> <1 0 1> 0.016 218.2
CdSe (mp-2691) <1 0 0> <0 0 1> 0.016 311.1
Au (mp-81) <1 1 1> <0 0 1> 0.017 242.0
GaTe (mp-542812) <1 0 0> <1 1 0> 0.017 90.5
PbSe (mp-2201) <1 1 0> <1 0 1> 0.020 218.2
C (mp-66) <1 1 0> <1 1 1> 0.021 290.6
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.024 276.5
C (mp-48) <0 0 1> <1 1 1> 0.025 290.6
Te2Mo (mp-602) <0 0 1> <1 0 1> 0.026 218.2
ZnTe (mp-2176) <1 1 0> <1 0 1> 0.028 218.2
CaF2 (mp-2741) <1 0 0> <0 0 1> 0.028 276.5
Bi2Se3 (mp-541837) <0 0 1> <0 0 1> 0.033 242.0
InAs (mp-20305) <1 1 0> <1 0 1> 0.034 218.2
LiAlO2 (mp-3427) <0 0 1> <0 0 1> 0.034 138.3
Ag (mp-124) <1 1 1> <0 0 1> 0.035 242.0
TiO2 (mp-2657) <1 0 0> <1 0 0> 0.035 192.0
MgF2 (mp-1249) <1 0 0> <0 0 1> 0.040 172.8
LiGaO2 (mp-5854) <1 0 1> <1 1 0> 0.044 90.5
Ag (mp-124) <1 1 0> <1 0 1> 0.045 72.7
YAlO3 (mp-3792) <1 1 0> <0 0 1> 0.048 276.5
GaP (mp-2490) <1 0 0> <0 0 1> 0.052 276.5
AlN (mp-661) <1 0 0> <1 0 1> 0.056 218.2
SiC (mp-11714) <1 0 0> <0 0 1> 0.058 345.7
YAlO3 (mp-3792) <1 0 0> <1 0 0> 0.061 319.9
GaN (mp-804) <1 0 1> <1 0 0> 0.062 192.0
GaN (mp-804) <1 1 1> <0 0 1> 0.064 276.5
GaTe (mp-542812) <1 0 1> <1 0 1> 0.066 290.9
SiO2 (mp-6930) <1 1 0> <1 0 0> 0.066 192.0
Ga2O3 (mp-886) <1 0 -1> <0 0 1> 0.068 311.1
BaF2 (mp-1029) <1 0 0> <0 0 1> 0.069 311.1
ZnO (mp-2133) <0 0 1> <0 0 1> 0.073 345.7
GaN (mp-804) <1 0 0> <1 1 1> 0.075 290.6
CdS (mp-672) <0 0 1> <0 0 1> 0.076 242.0
Mg (mp-153) <1 1 1> <0 0 1> 0.076 276.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
50 21 27 -0 -0 1
21 50 27 -0 -0 -1
27 27 48 0 -0 0
-0 -0 0 27 0 -0
-0 -0 -0 0 27 -0
1 -1 0 -0 -0 24
Compliance Tensor Sij (10-12Pa-1)
29.4 -4.9 -13.8 0 0 -1.6
-4.9 29.4 -13.8 0 0 1.6
-13.8 -13.8 36.2 0 0 0
0 0 0 36.4 0 0
0 0 0 0 36.4 0
-1.6 1.6 0 0 0 41.5
Shear Modulus GV
21 GPa
Bulk Modulus KV
33 GPa
Shear Modulus GR
18 GPa
Bulk Modulus KR
33 GPa
Shear Modulus GVRH
19 GPa
Bulk Modulus KVRH
33 GPa
Elastic Anisotropy
0.89
Poisson's Ratio
0.26

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 -0.14025 0.05685 0.00000
0.00000 0.00000 0.00000 -0.05685 -0.14025 0.00000
0.02550 -0.02550 0.00000 0.00000 0.00000 -0.13960
Piezoelectric Modulus ‖eijmax
0.08680 C/m2
Crystallographic Direction vmax
1.00000
-0.66667
0.83333

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
6.19 -0.02 -0.04
-0.02 6.18 -0.05
-0.04 -0.05 6.13
Dielectric Tensor εij (total)
9.37 -0.05 -0.09
-0.05 9.35 -0.11
-0.09 -0.11 9.22
Polycrystalline dielectric constant εpoly
(electronic contribution)
6.16
Polycrystalline dielectric constant εpoly
(total)
9.31
Refractive Index n
2.48
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
36
U Values
--
Pseudopotentials
VASP PAW: Al Se Cd
Final Energy/Atom
-4.0098 eV
Corrected Energy
-28.0685 eV
-28.0685 eV = -28.0685 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
2.41 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
2.41 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
3.47 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
3.47 eV
derivative discontinuity
functional
GLLB-SC
1.07 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 174192
  • 25637
  • 51421
  • 51422
  • 83527

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)