Final Magnetic Moment0.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom-0.104 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.059 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density8.15 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToHgTe |
Band Gap0.492 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinP3121 [152] |
HallP 31 2" |
Point Group32 |
Crystal Systemtrigonal |
Topological Classificationtrivial*
|
SubclassificationLCEBR†
|
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <0 0 1> | 77.0 |
AlN (mp-661) | <0 0 1> | <0 0 1> | 57.8 |
AlN (mp-661) | <1 0 0> | <1 1 0> | 170.1 |
CeO2 (mp-20194) | <1 0 0> | <0 0 1> | 365.8 |
GaAs (mp-2534) | <1 1 1> | <0 0 1> | 57.8 |
GaN (mp-804) | <1 0 0> | <0 0 1> | 250.3 |
SiO2 (mp-6930) | <1 0 0> | <1 0 0> | 196.4 |
SiO2 (mp-6930) | <1 0 1> | <1 0 0> | 245.5 |
DyScO3 (mp-31120) | <0 0 1> | <1 0 1> | 263.7 |
DyScO3 (mp-31120) | <0 1 0> | <1 0 1> | 263.7 |
DyScO3 (mp-31120) | <1 0 0> | <0 0 1> | 231.1 |
YVO4 (mp-19133) | <1 1 0> | <1 0 0> | 196.4 |
TePb (mp-19717) | <1 1 1> | <0 0 1> | 77.0 |
Ag (mp-124) | <1 0 0> | <0 0 1> | 134.8 |
Ag (mp-124) | <1 1 1> | <1 0 0> | 245.5 |
Bi2Te3 (mp-34202) | <0 0 1> | <0 0 1> | 231.1 |
GaSe (mp-1943) | <0 0 1> | <0 0 1> | 173.3 |
BN (mp-984) | <1 0 1> | <0 0 1> | 231.1 |
LiNbO3 (mp-3731) | <0 0 1> | <0 0 1> | 173.3 |
LiNbO3 (mp-3731) | <1 0 0> | <1 0 0> | 147.3 |
Bi2Se3 (mp-541837) | <0 0 1> | <0 0 1> | 57.8 |
MoS2 (mp-1434) | <0 0 1> | <0 0 1> | 77.0 |
MoS2 (mp-1434) | <1 0 0> | <1 0 0> | 196.4 |
Al (mp-134) | <1 0 0> | <0 0 1> | 96.3 |
AlN (mp-661) | <1 0 1> | <0 0 1> | 327.3 |
AlN (mp-661) | <1 1 1> | <1 0 0> | 343.7 |
GaAs (mp-2534) | <1 0 0> | <0 0 1> | 365.8 |
GaAs (mp-2534) | <1 1 0> | <0 0 1> | 231.1 |
GaN (mp-804) | <0 0 1> | <0 0 1> | 173.3 |
GaN (mp-804) | <1 1 0> | <1 0 1> | 316.5 |
GaN (mp-804) | <1 1 1> | <0 0 1> | 365.8 |
SiO2 (mp-6930) | <0 0 1> | <0 0 1> | 250.3 |
DyScO3 (mp-31120) | <1 1 0> | <0 0 1> | 192.5 |
InAs (mp-20305) | <1 1 1> | <0 0 1> | 250.3 |
ZnSe (mp-1190) | <1 0 0> | <0 0 1> | 96.3 |
ZnSe (mp-1190) | <1 1 0> | <0 0 1> | 231.1 |
ZnSe (mp-1190) | <1 1 1> | <0 0 1> | 57.8 |
KTaO3 (mp-3614) | <1 0 0> | <0 0 1> | 96.3 |
KTaO3 (mp-3614) | <1 1 0> | <0 0 1> | 327.3 |
KTaO3 (mp-3614) | <1 1 1> | <0 0 1> | 250.3 |
CdS (mp-672) | <0 0 1> | <0 0 1> | 134.8 |
CdS (mp-672) | <1 0 1> | <0 0 1> | 231.1 |
CdS (mp-672) | <1 1 1> | <0 0 1> | 269.6 |
Al (mp-134) | <1 1 0> | <0 0 1> | 96.3 |
Al (mp-134) | <1 1 1> | <0 0 1> | 250.3 |
LiF (mp-1138) | <1 0 0> | <0 0 1> | 134.8 |
LiF (mp-1138) | <1 1 0> | <0 0 1> | 96.3 |
LiF (mp-1138) | <1 1 1> | <0 0 1> | 250.3 |
Te2W (mp-22693) | <0 0 1> | <1 0 0> | 196.4 |
Te2W (mp-22693) | <0 1 1> | <1 1 0> | 170.1 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
Piezoelectric Tensor eij (C/m2) |
|||||
---|---|---|---|---|---|
-0.57446 | 0.57445 | 0.00000 | 0.84258 | 0.00000 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | -0.84258 | 0.57445 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
Piezoelectric Modulus ‖eij‖max1.17044 C/m2 |
Crystallographic Direction vmax |
---|
-1.00000 |
0.00000 |
-0.00000 |
Dielectric Tensor εij∞ (electronic contribution) |
||
---|---|---|
13.45 | -0.00 | 0.00 |
-0.00 | 13.45 | 0.00 |
0.00 | 0.00 | 19.03 |
Dielectric Tensor εij (total) |
||
---|---|---|
31.05 | -0.00 | 0.00 |
-0.00 | 31.05 | 0.00 |
0.00 | 0.00 | 60.58 |
Polycrystalline dielectric constant
εpoly∞
15.31
|
Polycrystalline dielectric constant
εpoly
40.89
|
Refractive Index n3.91 |
Potentially ferroelectric?Unknown |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
BiN (mvc-13729) | 0.6302 | 0.487 | 2 |
InS (mp-630528) | 0.7439 | 0.028 | 2 |
HgSe (mp-1018722) | 0.5614 | 0.033 | 2 |
HgTe (mp-1071269) | 0.2330 | 0.062 | 2 |
P (mp-7245) | 0.7230 | 0.093 | 1 |
Explore more synthesis descriptions for materials of composition HgTe.
Text computed by synthesisproject.org.
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Hg Te |
Final Energy/Atom-1.8274 eV |
Corrected Energy-10.9646 eV
-10.9646 eV = -10.9646 eV (uncorrected energy)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)