material

VCu3S4

ID:

mp-3762

DOI:

10.17188/1207386


Tags: Copper vanadium sulfide (3/1/4) Tricopper(I) tetrathiovanadate Tricopper tetrathiovanadate Sulvanite Copper(I) tetrathiovanadate High pressure experimental phase

Material Details

Final Magnetic Moment
-0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
-0.941 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
3.88 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
1.031 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P43m [215]
Hall
P 4 2 3
Point Group
43m
Crystal System
cubic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

Vibrational Properties

Reference for phonon calculations and visualization: Visualize with phononwebsite

Phonon dispersion

Density of States
Warning! These calculations were performed using a PBEsol exchange correlation functional in the framework of DFPT using the Abinit code. Please see the wiki for more info.

X-Ray Diffraction

    Select radiation source:
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
CdTe (mp-406) <1 1 0> <1 1 0> 0.000 124.3
ZnSe (mp-1190) <1 0 0> <1 0 0> 0.000 263.7
InSb (mp-20012) <1 1 0> <1 1 0> 0.000 124.3
KTaO3 (mp-3614) <1 0 0> <1 0 0> 0.001 146.5
Al (mp-134) <1 0 0> <1 0 0> 0.002 146.5
Ni (mp-23) <1 1 0> <1 1 0> 0.002 331.5
GaAs (mp-2534) <1 0 0> <1 0 0> 0.003 263.7
SiO2 (mp-6930) <0 0 1> <1 1 1> 0.003 152.2
LiF (mp-1138) <1 1 1> <1 1 1> 0.005 203.0
Cu (mp-30) <1 1 1> <1 1 1> 0.005 203.0
Cu (mp-30) <1 1 0> <1 1 0> 0.005 165.7
Cu (mp-30) <1 0 0> <1 0 0> 0.006 117.2
GaSe (mp-1943) <0 0 1> <1 1 1> 0.008 50.7
Fe3O4 (mp-19306) <1 0 0> <1 0 0> 0.011 146.5
LaAlO3 (mp-2920) <1 1 0> <1 1 0> 0.013 124.3
MoSe2 (mp-1634) <0 0 1> <1 1 1> 0.016 152.2
PbSe (mp-2201) <1 1 1> <1 1 1> 0.016 203.0
WSe2 (mp-1821) <0 0 1> <1 1 1> 0.016 152.2
PbSe (mp-2201) <1 1 0> <1 1 0> 0.016 165.7
Ge (mp-32) <1 0 0> <1 0 0> 0.018 263.7
YVO4 (mp-19133) <0 0 1> <1 0 0> 0.027 263.7
AlN (mp-661) <1 0 1> <1 1 1> 0.028 304.5
GaSb (mp-1156) <1 1 1> <1 1 1> 0.028 203.0
GaSb (mp-1156) <1 1 0> <1 1 0> 0.029 165.7
BaF2 (mp-1029) <1 1 1> <1 1 1> 0.031 203.0
BaF2 (mp-1029) <1 1 0> <1 1 0> 0.032 165.7
DyScO3 (mp-31120) <0 0 1> <1 1 0> 0.033 124.3
MgF2 (mp-1249) <1 0 0> <1 1 0> 0.033 290.0
MgO (mp-1265) <1 0 0> <1 0 0> 0.036 146.5
TiO2 (mp-390) <0 0 1> <1 0 0> 0.039 29.3
CdSe (mp-2691) <1 1 1> <1 1 1> 0.040 203.0
CdSe (mp-2691) <1 1 0> <1 1 0> 0.041 165.7
AlN (mp-661) <0 0 1> <1 0 0> 0.044 205.1
SiC (mp-7631) <1 0 0> <1 0 0> 0.046 234.4
YAlO3 (mp-3792) <1 0 1> <1 0 0> 0.049 146.5
MgAl2O4 (mp-3536) <1 0 0> <1 0 0> 0.051 263.7
Fe2O3 (mp-24972) <0 0 1> <1 1 1> 0.051 203.0
LiGaO2 (mp-5854) <0 0 1> <1 1 0> 0.052 82.9
Bi2Te3 (mp-34202) <0 0 1> <1 1 1> 0.052 50.7
TiO2 (mp-390) <1 0 1> <1 0 0> 0.058 322.3
LaAlO3 (mp-2920) <0 0 1> <1 0 0> 0.060 205.1
LiGaO2 (mp-5854) <1 0 0> <1 0 0> 0.062 175.8
ZnO (mp-2133) <0 0 1> <1 1 1> 0.067 152.2
CaCO3 (mp-3953) <0 0 1> <1 1 1> 0.076 152.2
KTaO3 (mp-3614) <1 1 0> <1 1 0> 0.081 248.6
PbS (mp-21276) <1 0 0> <1 0 0> 0.081 146.5
BaTiO3 (mp-5986) <0 0 1> <1 0 0> 0.082 146.5
BN (mp-984) <1 0 0> <1 0 0> 0.082 58.6
TbScO3 (mp-31119) <0 0 1> <1 1 0> 0.083 124.3
SiC (mp-8062) <1 1 1> <1 1 0> 0.083 165.7
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
88 15 15 0 0 0
15 88 15 0 0 0
15 15 88 0 0 0
0 0 0 20 0 0
0 0 0 0 20 0
0 0 0 0 0 20
Compliance Tensor Sij (10-12Pa-1)
12 -1.7 -1.7 0 0 0
-1.7 12 -1.7 0 0 0
-1.7 -1.7 12 0 0 0
0 0 0 50.5 0 0
0 0 0 0 50.5 0
0 0 0 0 0 50.5
Shear Modulus GV
26 GPa
Bulk Modulus KV
39 GPa
Shear Modulus GR
24 GPa
Bulk Modulus KR
39 GPa
Shear Modulus GVRH
25 GPa
Bulk Modulus KVRH
39 GPa
Elastic Anisotropy
0.47
Poisson's Ratio
0.23

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Piezoelectric Modulus ‖eijmax
0.00000 C/m2
Crystallographic Direction vmax
1.00000
0.00000
0.00000

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
7.19 0.00 0.00
0.00 7.19 0.00
0.00 0.00 7.19
Dielectric Tensor εij (total)
7.64 0.00 0.00
0.00 7.64 0.00
0.00 0.00 7.64
Polycrystalline dielectric constant εpoly
(electronic contribution)
2.40
Polycrystalline dielectric constant εpoly
(total)
2.40
Refractive Index n
1.55
Potentially ferroelectric?
Unknown

Similar Structures beta feature

Explanation of dissimilarity measure: Documentation.
material dissimilarity Ehull # of elements
Cu6GeWS8 (mp-557225) 0.6512 0.000 4
VCu3Se4 (mp-21855) 0.1721 0.000 3
TaCu3Se4 (mp-4081) 0.3929 0.000 3
TaCu3S4 (mp-10748) 0.1724 0.000 3
NbCu3Se4 (mp-4043) 0.4103 0.000 3
NbCu3S4 (mp-5621) 0.2077 0.000 3
Up to 5 similar elemental, binary, ternary, quaternary, etc. structures displayed (dissimilarity threshold 0.75). Ehull: energy above hull per atom [eV].

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
None
U Values
--
Pseudopotentials
VASP PAW: V_pv Cu_pv S
Final Energy/Atom
-5.3467 eV
Corrected Energy
-45.4274 eV
-45.4274 eV = -42.7736 eV (uncorrected energy) - 2.6538 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 36169
  • 628955
  • 628945
  • 628957
  • 15490
  • 183993
  • 628947
  • 402891
  • 1414
  • 36298
Submitted by
User remarks:
  • Tricopper(I) tetrathiovanadate
  • Sulvanite
  • High pressure experimental phase

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)