Final Magnetic Moment0.008 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom-2.980 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.001 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density7.09 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToNdCuO2 + Nd(CuO2)2 + Nd2O3 |
Band Gap0.000 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinI4/mmm [139] |
Hall-I 4 2 |
Point Group4/mmm |
Crystal Systemtetragonal |
Topological ClassificationSM*
|
SubclassificationESFD†
|
Crossing TypePoint
|
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <0 0 1> | 284.2 |
LaAlO3 (mp-2920) | <1 0 0> | <1 0 1> | 206.2 |
AlN (mp-661) | <0 0 1> | <0 0 1> | 315.8 |
AlN (mp-661) | <1 0 0> | <1 0 1> | 206.2 |
AlN (mp-661) | <1 0 1> | <0 0 1> | 189.5 |
AlN (mp-661) | <1 1 1> | <1 0 0> | 196.3 |
CeO2 (mp-20194) | <1 0 0> | <0 0 1> | 31.6 |
CeO2 (mp-20194) | <1 1 0> | <0 0 1> | 221.1 |
CeO2 (mp-20194) | <1 1 1> | <0 0 1> | 157.9 |
GaAs (mp-2534) | <1 0 0> | <0 0 1> | 31.6 |
GaAs (mp-2534) | <1 1 0> | <1 1 0> | 138.8 |
GaAs (mp-2534) | <1 1 1> | <0 0 1> | 284.2 |
BaF2 (mp-1029) | <1 0 0> | <0 0 1> | 79.0 |
GaN (mp-804) | <0 0 1> | <0 0 1> | 79.0 |
GaN (mp-804) | <1 0 0> | <0 0 1> | 173.7 |
GaN (mp-804) | <1 0 1> | <1 0 1> | 154.6 |
GaN (mp-804) | <1 1 0> | <1 1 0> | 208.2 |
GaN (mp-804) | <1 1 1> | <1 1 1> | 213.5 |
SiO2 (mp-6930) | <0 0 1> | <1 0 1> | 257.7 |
SiO2 (mp-6930) | <1 0 0> | <1 1 0> | 138.8 |
SiO2 (mp-6930) | <1 0 1> | <0 0 1> | 252.7 |
SiO2 (mp-6930) | <1 1 0> | <1 1 1> | 142.3 |
KCl (mp-23193) | <1 0 0> | <0 0 1> | 79.0 |
DyScO3 (mp-31120) | <0 0 1> | <0 0 1> | 31.6 |
DyScO3 (mp-31120) | <0 1 0> | <0 0 1> | 126.3 |
DyScO3 (mp-31120) | <0 1 1> | <1 1 0> | 277.6 |
DyScO3 (mp-31120) | <1 0 0> | <1 1 0> | 138.8 |
DyScO3 (mp-31120) | <1 0 1> | <1 1 0> | 277.6 |
DyScO3 (mp-31120) | <1 1 0> | <0 0 1> | 63.2 |
InAs (mp-20305) | <1 0 0> | <0 0 1> | 79.0 |
ZnSe (mp-1190) | <1 0 0> | <0 0 1> | 31.6 |
ZnSe (mp-1190) | <1 1 0> | <1 1 0> | 138.8 |
ZnSe (mp-1190) | <1 1 1> | <0 0 1> | 284.2 |
KTaO3 (mp-3614) | <1 0 0> | <0 0 1> | 15.8 |
KTaO3 (mp-3614) | <1 1 0> | <1 1 0> | 69.4 |
KTaO3 (mp-3614) | <1 1 1> | <0 0 1> | 142.1 |
CdS (mp-672) | <0 0 1> | <0 0 1> | 315.8 |
CdS (mp-672) | <1 0 0> | <0 0 1> | 252.7 |
CdS (mp-672) | <1 0 1> | <1 0 0> | 343.5 |
CdS (mp-672) | <1 1 1> | <0 0 1> | 205.3 |
LiF (mp-1138) | <1 0 0> | <0 0 1> | 15.8 |
LiF (mp-1138) | <1 1 1> | <0 0 1> | 142.1 |
Te2W (mp-22693) | <0 0 1> | <0 0 1> | 236.9 |
TePb (mp-19717) | <1 0 0> | <0 0 1> | 205.3 |
Te2Mo (mp-602) | <1 0 1> | <0 0 1> | 284.2 |
Ag (mp-124) | <1 1 0> | <0 0 1> | 268.5 |
Ag (mp-124) | <1 1 1> | <0 0 1> | 236.9 |
GaSe (mp-1943) | <0 0 1> | <0 0 1> | 252.7 |
BN (mp-984) | <1 0 0> | <0 0 1> | 94.7 |
Bi2Se3 (mp-541837) | <0 0 1> | <0 0 1> | 315.8 |
Stiffness Tensor Cij (GPa) |
|||||
---|---|---|---|---|---|
235 | 135 | 58 | 0 | 0 | 0 |
135 | 235 | 58 | 0 | 0 | 0 |
58 | 58 | 217 | 0 | 0 | 0 |
0 | 0 | 0 | 35 | 0 | 0 |
0 | 0 | 0 | 0 | 35 | 0 |
0 | 0 | 0 | 0 | 0 | 109 |
Compliance Tensor Sij (10-12Pa-1) |
|||||
---|---|---|---|---|---|
6.5 | -3.5 | -0.8 | 0 | 0 | 0 |
-3.5 | 6.5 | -0.8 | 0 | 0 | 0 |
-0.8 | -0.8 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 28.7 | 0 | 0 |
0 | 0 | 0 | 0 | 28.7 | 0 |
0 | 0 | 0 | 0 | 0 | 9.2 |
Shear Modulus GV65 GPa |
Bulk Modulus KV132 GPa |
Shear Modulus GR51 GPa |
Bulk Modulus KR128 GPa |
Shear Modulus GVRH58 GPa |
Bulk Modulus KVRH130 GPa |
Elastic Anisotropy1.34 |
Poisson's Ratio0.31 |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
La2PdO4 (mp-8672) | 0.0485 | 0.055 | 3 |
Gd2CuO4 (mp-4860) | 0.0444 | 0.000 | 3 |
Sm2CuO4 (mp-4210) | 0.0300 | 0.008 | 3 |
Pr2CuO4 (mp-4181) | 0.0140 | 0.000 | 3 |
La2CuO4 (mp-1077929) | 0.0345 | 0.000 | 3 |
Sr2Cu(OF)2 (mp-1025280) | 0.4369 | 0.027 | 4 |
LiNd14(Cu3O14)2 (mp-766561) | 0.1257 | 0.009 | 4 |
LiNd6(CuO6)2 (mp-756531) | 0.2501 | 0.026 | 4 |
LiLa4AuO8 (mp-560605) | 0.0652 | 0.000 | 4 |
Ce2Cu(NO)2 (mp-1022723) | 0.0460 | 0.244 | 4 |
Sr2Ti2Bi2OF2 (mp-1078216) | 0.7098 | 0.000 | 5 |
Sr2Ti2Sb2OF2 (mp-1079717) | 0.7474 | 0.000 | 5 |
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Nd_3 Cu_pv O |
Final Energy/Atom-7.3544 eV |
Corrected Energy-54.2289 eV
Uncorrected energy = -51.4809 eV
Composition-based energy adjustment (-0.687 eV/atom x 4.0 atoms) = -2.7480 eV
Corrected energy = -54.2289 eV
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)