Final Magnetic Moment0.005 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom-0.771 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.000 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density11.55 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToStable |
Band Gap0.000 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinP63/mmc [194] |
Hall-P 6c 2c |
Point Group6/mmm |
Crystal Systemhexagonal |
Topological ClassificationTI*
|
SubclassificationSEBR†
|
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | elastic energy [meV] | MCIA† [Å2] |
---|---|---|---|---|
Bi2Se3 (mp-541837) | <0 0 1> | <0 0 1> | 0.000 | 182.7 |
CdWO4 (mp-19387) | <1 0 0> | <0 0 1> | 0.000 | 125.0 |
LiF (mp-1138) | <1 1 1> | <0 0 1> | 0.001 | 28.8 |
PbSe (mp-2201) | <1 1 1> | <0 0 1> | 0.004 | 67.3 |
TePb (mp-19717) | <1 1 1> | <0 0 1> | 0.004 | 298.1 |
MgAl2O4 (mp-3536) | <1 1 1> | <0 0 1> | 0.004 | 115.4 |
WSe2 (mp-1821) | <0 0 1> | <0 0 1> | 0.007 | 9.6 |
MoSe2 (mp-1634) | <0 0 1> | <0 0 1> | 0.008 | 9.6 |
LaF3 (mp-905) | <0 0 1> | <0 0 1> | 0.015 | 182.7 |
MgO (mp-1265) | <1 1 1> | <0 0 1> | 0.015 | 125.0 |
TbScO3 (mp-31119) | <1 0 1> | <1 1 0> | 0.017 | 168.3 |
GaSb (mp-1156) | <1 1 1> | <0 0 1> | 0.018 | 67.3 |
MoSe2 (mp-1634) | <1 0 0> | <0 0 1> | 0.020 | 153.8 |
BN (mp-984) | <0 0 1> | <0 0 1> | 0.021 | 38.5 |
Ge(Bi3O5)4 (mp-23352) | <1 1 1> | <0 0 1> | 0.025 | 182.7 |
GdScO3 (mp-5690) | <1 0 0> | <0 0 1> | 0.032 | 230.8 |
WS2 (mp-224) | <0 0 1> | <0 0 1> | 0.035 | 115.4 |
CdS (mp-672) | <0 0 1> | <0 0 1> | 0.036 | 182.7 |
MoS2 (mp-1434) | <0 0 1> | <0 0 1> | 0.036 | 115.4 |
CdSe (mp-2691) | <1 1 1> | <0 0 1> | 0.036 | 67.3 |
TeO2 (mp-2125) | <1 0 0> | <0 0 1> | 0.049 | 211.5 |
GdScO3 (mp-5690) | <0 0 1> | <0 0 1> | 0.050 | 96.1 |
CdTe (mp-406) | <1 0 0> | <0 0 1> | 0.054 | 307.7 |
InSb (mp-20012) | <1 0 0> | <0 0 1> | 0.055 | 307.7 |
MgF2 (mp-1249) | <0 0 1> | <0 0 1> | 0.060 | 153.8 |
MoSe2 (mp-1634) | <1 1 0> | <0 0 1> | 0.061 | 269.2 |
Fe3O4 (mp-19306) | <1 1 1> | <0 0 1> | 0.067 | 125.0 |
InP (mp-20351) | <1 1 1> | <0 0 1> | 0.070 | 182.7 |
GaN (mp-804) | <0 0 1> | <0 0 1> | 0.072 | 115.4 |
BaTiO3 (mp-5986) | <1 0 1> | <0 0 1> | 0.074 | 115.4 |
DyScO3 (mp-31120) | <1 0 1> | <1 1 0> | 0.076 | 168.3 |
CeO2 (mp-20194) | <1 1 1> | <0 0 1> | 0.077 | 153.8 |
Cu (mp-30) | <1 1 1> | <0 0 1> | 0.077 | 67.3 |
Si (mp-149) | <1 1 1> | <0 0 1> | 0.085 | 153.8 |
TeO2 (mp-2125) | <0 0 1> | <0 0 1> | 0.093 | 96.1 |
MoSe2 (mp-1634) | <1 0 1> | <0 0 1> | 0.096 | 259.6 |
Mg (mp-153) | <0 0 1> | <0 0 1> | 0.097 | 115.4 |
C (mp-48) | <1 0 0> | <1 0 1> | 0.123 | 247.6 |
CdWO4 (mp-19387) | <0 1 1> | <0 0 1> | 0.131 | 240.4 |
C (mp-66) | <1 1 1> | <0 0 1> | 0.149 | 67.3 |
WSe2 (mp-1821) | <1 1 1> | <0 0 1> | 0.159 | 86.5 |
CaCO3 (mp-3953) | <0 0 1> | <0 0 1> | 0.175 | 67.3 |
WS2 (mp-224) | <1 1 1> | <0 0 1> | 0.176 | 240.4 |
Te2Mo (mp-602) | <1 0 0> | <0 0 1> | 0.177 | 269.2 |
Al2O3 (mp-1143) | <0 0 1> | <0 0 1> | 0.182 | 182.7 |
Te2W (mp-22693) | <0 1 0> | <0 0 1> | 0.184 | 269.2 |
ZrO2 (mp-2858) | <1 1 -1> | <0 0 1> | 0.184 | 182.7 |
C (mp-66) | <1 0 0> | <0 0 1> | 0.185 | 201.9 |
TiO2 (mp-2657) | <1 0 1> | <0 0 1> | 0.196 | 259.6 |
GaSe (mp-1943) | <0 0 1> | <0 0 1> | 0.196 | 38.5 |
Stiffness Tensor Cij (GPa) |
|||||
---|---|---|---|---|---|
242 | 57 | 100 | 0 | 0 | 0 |
57 | 242 | 100 | 0 | 0 | 0 |
100 | 100 | 246 | 0 | 0 | 0 |
0 | 0 | 0 | 92 | 0 | 0 |
0 | 0 | 0 | 0 | 92 | 0 |
0 | 0 | 0 | 0 | 0 | 92 |
Compliance Tensor Sij (10-12Pa-1) |
|||||
---|---|---|---|---|---|
5 | -0.4 | -1.9 | 0 | 0 | 0 |
-0.4 | 5 | -1.9 | 0 | 0 | 0 |
-1.9 | -1.9 | 5.6 | 0 | 0 | 0 |
0 | 0 | 0 | 10.8 | 0 | 0 |
0 | 0 | 0 | 0 | 10.8 | 0 |
0 | 0 | 0 | 0 | 0 | 10.8 |
Shear Modulus GV87 GPa |
Bulk Modulus KV138 GPa |
Shear Modulus GR85 GPa |
Bulk Modulus KR137 GPa |
Shear Modulus GVRH86 GPa |
Bulk Modulus KVRH138 GPa |
Elastic Anisotropy0.12 |
Poisson's Ratio0.24 |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
Cr2GaC (mp-20197) | 0.0162 | 0.000 | 3 |
Ti2GaC (mp-12537) | 0.0197 | 0.000 | 3 |
Zr2SnC (mp-4613) | 0.0230 | 0.000 | 3 |
Ti2GaN (mp-1025550) | 0.0660 | 0.000 | 3 |
V2GaC (mp-1080835) | 0.0303 | 0.000 | 3 |
Co3H (mp-1025425) | 0.3953 | 0.000 | 2 |
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Hf_pv Sn_d C |
Final Energy/Atom-9.0587 eV |
Corrected Energy-72.4695 eV
-72.4695 eV = -72.4695 eV (uncorrected energy)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)