material

YZnAsO

ID:

mp-546011

DOI:

10.17188/1267136


Tags: Yttrium zinc arsenide oxide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
-1.986 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.75 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
1.206 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P4/nmm [129]
Hall
P 4ab 2ab 1ab
Point Group
4/mmm
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
BaF2 (mp-1029) <1 0 0> <0 0 1> 0.000 79.0
Y3Fe5O12 (mp-19648) <1 0 0> <0 0 1> 0.001 158.0
InP (mp-20351) <1 0 0> <0 0 1> 0.002 142.2
Ga2O3 (mp-886) <1 0 0> <1 0 1> 0.015 272.8
ZnO (mp-2133) <1 0 1> <1 0 0> 0.019 178.1
Te2W (mp-22693) <1 0 0> <1 0 1> 0.026 194.9
DyScO3 (mp-31120) <1 1 0> <0 0 1> 0.028 63.2
ZnO (mp-2133) <1 0 0> <1 0 1> 0.028 155.9
SiC (mp-11714) <1 0 0> <1 0 1> 0.033 155.9
CdS (mp-672) <1 0 1> <1 0 1> 0.033 194.9
LiTaO3 (mp-3666) <1 1 0> <1 0 0> 0.033 249.4
C (mp-48) <1 0 1> <1 1 1> 0.034 158.4
TbScO3 (mp-31119) <1 1 0> <0 0 1> 0.039 63.2
Fe2O3 (mp-24972) <0 0 1> <1 0 0> 0.042 320.6
TeO2 (mp-2125) <0 1 1> <1 1 0> 0.044 151.1
MgF2 (mp-1249) <1 0 0> <0 0 1> 0.054 189.6
SrTiO3 (mp-4651) <1 0 0> <0 0 1> 0.058 221.2
BaTiO3 (mp-5986) <1 0 0> <1 0 1> 0.062 116.9
MoS2 (mp-1434) <1 0 1> <1 0 1> 0.062 272.8
NdGaO3 (mp-3196) <1 0 0> <0 0 1> 0.066 221.2
BaTiO3 (mp-5986) <1 1 1> <0 0 1> 0.067 142.2
C (mp-66) <1 0 0> <0 0 1> 0.071 63.2
Fe2O3 (mp-24972) <1 1 0> <1 0 0> 0.075 249.4
GdScO3 (mp-5690) <0 1 1> <1 0 1> 0.081 272.8
Ga2O3 (mp-886) <1 0 1> <1 0 1> 0.086 233.8
Ag (mp-124) <1 1 0> <0 0 1> 0.092 268.6
TiO2 (mp-2657) <1 1 0> <1 0 0> 0.092 178.1
AlN (mp-661) <1 1 1> <1 0 0> 0.094 142.5
KCl (mp-23193) <1 1 0> <1 0 0> 0.102 285.0
AlN (mp-661) <1 0 0> <1 0 1> 0.111 77.9
MgF2 (mp-1249) <1 1 1> <1 0 0> 0.111 178.1
BaTiO3 (mp-5986) <0 0 1> <0 0 1> 0.112 15.8
PbS (mp-21276) <1 0 0> <0 0 1> 0.113 142.2
BaTiO3 (mp-5986) <1 1 0> <1 1 1> 0.123 211.2
Au (mp-81) <1 1 0> <0 0 1> 0.126 268.6
Fe2O3 (mp-24972) <1 1 1> <1 0 0> 0.129 249.4
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.135 63.2
GdScO3 (mp-5690) <1 1 0> <0 0 1> 0.148 63.2
TiO2 (mp-2657) <1 1 1> <1 0 0> 0.152 178.1
BN (mp-984) <1 1 0> <0 0 1> 0.173 331.8
ZnO (mp-2133) <1 1 1> <1 1 1> 0.176 158.4
ZnO (mp-2133) <1 1 0> <1 1 0> 0.176 151.1
SiC (mp-8062) <1 1 0> <0 0 1> 0.179 347.6
YVO4 (mp-19133) <0 0 1> <0 0 1> 0.182 205.4
SiC (mp-11714) <1 0 1> <1 1 1> 0.192 264.0
PbSe (mp-2201) <1 0 0> <0 0 1> 0.197 79.0
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.210 31.6
TiO2 (mp-2657) <1 0 1> <0 0 1> 0.221 284.4
MgO (mp-1265) <1 0 0> <0 0 1> 0.221 142.2
LiGaO2 (mp-5854) <0 1 1> <1 1 1> 0.224 211.2
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
178 35 39 0 0 0
35 178 39 0 0 0
39 39 108 0 0 0
0 0 0 18 0 0
0 0 0 0 18 0
0 0 0 0 0 41
Compliance Tensor Sij (10-12Pa-1)
6.2 -0.8 -1.9 0 0 0
-0.8 6.2 -1.9 0 0 0
-1.9 -1.9 10.7 0 0 0
0 0 0 56.6 0 0
0 0 0 0 56.6 0
0 0 0 0 0 24.5
Shear Modulus GV
39 GPa
Bulk Modulus KV
76 GPa
Shear Modulus GR
29 GPa
Bulk Modulus KR
73 GPa
Shear Modulus GVRH
34 GPa
Bulk Modulus KVRH
75 GPa
Elastic Anisotropy
1.80
Poisson's Ratio
0.30

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
32
U Values
--
Pseudopotentials
VASP PAW: Y_sv O As Zn Y_sv As O Zn
Final Energy/Atom
-6.1441 eV
Corrected Energy
-50.5571 eV
-50.5571 eV = -49.1525 eV (uncorrected energy) - 1.4046 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.34 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.35 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.89 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.90 eV
derivative discontinuity
functional
GLLB-SC
0.55 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 163780
  • 420205

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)