material

YCu2Bi2(SeO2)2

ID:

mp-550306

DOI:

10.17188/1267412


Tags: Dibismuth yttrium copper(I) copper tetraoxide diselenide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
-1.660 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
7.47 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4/mmm [139]
Hall
-I 4 2
Point Group
4/mmm
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.001 198.1
CaF2 (mp-2741) <1 0 0> <0 0 1> 0.001 30.5
WS2 (mp-224) <0 0 1> <0 0 1> 0.003 167.6
MoS2 (mp-1434) <0 0 1> <0 0 1> 0.003 167.6
LiAlO2 (mp-3427) <0 0 1> <0 0 1> 0.004 137.1
InAs (mp-20305) <1 0 0> <0 0 1> 0.006 76.2
Ga2O3 (mp-886) <1 1 0> <1 0 0> 0.010 292.5
ZnTe (mp-2176) <1 0 0> <0 0 1> 0.010 76.2
SiO2 (mp-6930) <1 0 0> <1 1 0> 0.011 137.9
NdGaO3 (mp-3196) <1 1 0> <0 0 1> 0.013 60.9
GaP (mp-2490) <1 0 0> <0 0 1> 0.014 30.5
Mg (mp-153) <0 0 1> <0 0 1> 0.015 167.6
GdScO3 (mp-5690) <0 1 1> <0 0 1> 0.016 274.2
GaN (mp-804) <1 1 0> <0 0 1> 0.018 350.4
SiC (mp-8062) <1 0 0> <0 0 1> 0.028 76.2
ZrO2 (mp-2858) <0 0 1> <0 0 1> 0.029 137.1
C (mp-66) <1 1 0> <0 0 1> 0.036 380.9
GaP (mp-2490) <1 1 0> <0 0 1> 0.049 213.3
Ni (mp-23) <1 0 0> <0 0 1> 0.052 60.9
Ag (mp-124) <1 0 0> <0 0 1> 0.055 137.1
GdScO3 (mp-5690) <1 1 1> <0 0 1> 0.062 289.5
MgO (mp-1265) <1 1 0> <0 0 1> 0.067 335.2
Te2W (mp-22693) <0 0 1> <0 0 1> 0.071 335.2
Si (mp-149) <1 1 0> <0 0 1> 0.073 213.3
CaF2 (mp-2741) <1 1 0> <0 0 1> 0.077 213.3
CeO2 (mp-20194) <1 1 0> <0 0 1> 0.078 213.3
GdScO3 (mp-5690) <0 0 1> <0 0 1> 0.092 319.9
LiF (mp-1138) <1 1 0> <0 0 1> 0.095 259.0
CaCO3 (mp-3953) <1 1 0> <0 0 1> 0.096 152.4
CdSe (mp-2691) <1 0 0> <0 0 1> 0.100 76.2
CsI (mp-614603) <1 0 0> <0 0 1> 0.102 60.9
TiO2 (mp-2657) <1 0 0> <0 0 1> 0.103 167.6
YAlO3 (mp-3792) <0 1 1> <0 0 1> 0.103 289.5
NdGaO3 (mp-3196) <0 1 0> <0 0 1> 0.112 213.3
BN (mp-984) <1 0 0> <0 0 1> 0.112 213.3
LiGaO2 (mp-5854) <1 1 0> <0 0 1> 0.114 289.5
GdScO3 (mp-5690) <1 0 1> <0 0 1> 0.121 228.5
ZnO (mp-2133) <0 0 1> <0 0 1> 0.127 167.6
Au (mp-81) <1 0 0> <0 0 1> 0.128 137.1
GaSb (mp-1156) <1 0 0> <0 0 1> 0.133 76.2
C (mp-48) <1 1 1> <0 0 1> 0.139 304.7
TbScO3 (mp-31119) <0 1 1> <0 0 1> 0.145 274.2
GaN (mp-804) <1 0 0> <0 0 1> 0.145 167.6
Bi2Te3 (mp-34202) <0 0 1> <0 0 1> 0.149 121.9
Ni (mp-23) <1 1 0> <1 0 0> 0.154 292.5
TiO2 (mp-2657) <0 0 1> <0 0 1> 0.156 198.1
TbScO3 (mp-31119) <0 0 1> <0 0 1> 0.163 319.9
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.168 30.5
LiGaO2 (mp-5854) <1 0 1> <1 1 0> 0.174 137.9
PbSe (mp-2201) <1 0 0> <0 0 1> 0.180 76.2
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
139 68 27 0 0 0
68 139 27 0 0 0
27 27 73 -0 0 0
0 0 -0 22 0 0
0 0 0 0 22 0
0 0 0 0 0 61
Compliance Tensor Sij (10-12Pa-1)
9.7 -4.4 -2 0 0 0
-4.4 9.7 -2 0 0 0
-2 -2 15.1 0 0 0
0 0 0 45.9 0 0
0 0 0 0 45.9 0
0 0 0 0 0 16.3
Shear Modulus GV
36 GPa
Bulk Modulus KV
66 GPa
Shear Modulus GR
30 GPa
Bulk Modulus KR
56 GPa
Shear Modulus GVRH
33 GPa
Bulk Modulus KVRH
61 GPa
Elastic Anisotropy
1.18
Poisson's Ratio
0.27

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
60
U Values
--
Pseudopotentials
VASP PAW: O Bi Se O Y_sv Cu_pv O
Final Energy/Atom
-5.8735 eV
Corrected Energy
-67.4173 eV
-67.4173 eV = -64.6082 eV (uncorrected energy) - 2.8092 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 95369

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)