Final Magnetic Moment0.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom-3.338 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.135 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density3.36 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToSrAl4O7 |
Band Gap3.233 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinCmme [67] |
Hall-C 2b 2 |
Point Groupmmm |
Crystal Systemorthorhombic |
Topological Classificationtrivial*
|
SubclassificationLCEBR†
|
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <1 1 0> | <0 0 1> | 125.4 |
AlN (mp-661) | <1 0 0> | <0 1 0> | 268.9 |
AlN (mp-661) | <0 0 1> | <1 1 0> | 238.3 |
AlN (mp-661) | <1 0 1> | <0 1 0> | 313.7 |
AlN (mp-661) | <1 1 1> | <0 1 0> | 313.7 |
CeO2 (mp-20194) | <1 1 0> | <0 0 1> | 125.4 |
GaN (mp-804) | <1 0 1> | <0 1 0> | 224.1 |
GaN (mp-804) | <1 1 0> | <1 0 0> | 262.3 |
KCl (mp-23193) | <1 1 0> | <0 1 0> | 179.3 |
DyScO3 (mp-31120) | <0 1 1> | <1 1 0> | 158.9 |
KTaO3 (mp-3614) | <1 1 0> | <0 0 1> | 250.8 |
CdS (mp-672) | <1 1 1> | <0 1 0> | 313.7 |
CdS (mp-672) | <1 1 0> | <1 0 0> | 196.7 |
LiF (mp-1138) | <1 0 0> | <0 0 1> | 250.8 |
LiF (mp-1138) | <1 1 0> | <1 1 0> | 238.3 |
Te2W (mp-22693) | <0 1 0> | <0 1 1> | 266.3 |
TePb (mp-19717) | <1 1 0> | <0 1 0> | 179.3 |
Ag (mp-124) | <1 0 0> | <0 1 0> | 313.7 |
Ag (mp-124) | <1 1 0> | <1 0 0> | 196.7 |
GaSe (mp-1943) | <0 0 1> | <1 0 0> | 327.9 |
BN (mp-984) | <1 1 1> | <0 1 0> | 313.7 |
BN (mp-984) | <0 0 1> | <0 1 0> | 224.1 |
LiNbO3 (mp-3731) | <1 0 1> | <0 1 0> | 313.7 |
LiNbO3 (mp-3731) | <0 0 1> | <1 0 0> | 327.9 |
LiNbO3 (mp-3731) | <1 1 0> | <0 1 1> | 133.2 |
MoS2 (mp-1434) | <0 0 1> | <1 0 0> | 131.1 |
Al (mp-134) | <1 1 0> | <0 0 1> | 250.8 |
LiGaO2 (mp-5854) | <0 0 1> | <0 1 0> | 313.7 |
CdTe (mp-406) | <1 1 0> | <0 0 1> | 125.4 |
LiGaO2 (mp-5854) | <1 0 0> | <1 1 0> | 317.7 |
LiTaO3 (mp-3666) | <0 0 1> | <1 0 0> | 327.9 |
LiTaO3 (mp-3666) | <1 0 0> | <1 0 1> | 141.5 |
LiTaO3 (mp-3666) | <1 0 1> | <0 1 0> | 313.7 |
LiTaO3 (mp-3666) | <1 1 0> | <0 0 1> | 125.4 |
Fe3O4 (mp-19306) | <1 1 0> | <1 0 0> | 196.7 |
MgO (mp-1265) | <1 0 0> | <0 1 0> | 89.6 |
TiO2 (mp-2657) | <1 0 0> | <0 1 0> | 134.4 |
TiO2 (mp-2657) | <1 0 1> | <0 1 0> | 313.7 |
TiO2 (mp-2657) | <1 1 0> | <1 0 0> | 196.7 |
GdScO3 (mp-5690) | <0 1 1> | <1 1 0> | 158.9 |
Mg (mp-153) | <0 0 1> | <1 0 0> | 131.1 |
Mg (mp-153) | <1 1 0> | <1 0 0> | 262.3 |
PbS (mp-21276) | <1 1 0> | <1 0 0> | 196.7 |
InP (mp-20351) | <1 1 0> | <1 0 0> | 196.7 |
GaP (mp-2490) | <1 1 0> | <1 0 0> | 131.1 |
InP (mp-20351) | <1 1 1> | <1 1 0> | 238.3 |
TbScO3 (mp-31119) | <0 1 1> | <1 1 0> | 158.9 |
Ni (mp-23) | <1 0 0> | <1 0 0> | 196.7 |
Ni (mp-23) | <1 1 0> | <0 1 0> | 224.1 |
InSb (mp-20012) | <1 1 0> | <0 0 1> | 125.4 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Sr_sv Al O |
Final Energy/Atom-7.2042 eV |
Corrected Energy-182.7334 eV
-182.7334 eV = -172.9013 eV (uncorrected energy) - 9.8321 eV (MP Anion Correction)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)