material

RbN3

ID:

mp-581833

DOI:

10.17188/1276902


Tags: Rubidium azide - subcell

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
-0.415 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.016 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
2.57 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
RbN3
Band Gap
3.753 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P4/mmm [123]
Hall
-P 4 2
Point Group
4/mmm
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Cu (mp-30) <1 0 0> <0 0 1> 0.000 117.8
TeO2 (mp-2125) <0 0 1> <1 0 0> 0.000 64.5
GaTe (mp-542812) <1 0 0> <1 1 1> 0.001 135.1
LaAlO3 (mp-2920) <1 0 1> <1 1 0> 0.001 151.9
LiF (mp-1138) <1 0 0> <0 0 1> 0.004 132.6
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.005 250.4
Ga2O3 (mp-886) <1 0 -1> <1 1 1> 0.005 270.1
TeO2 (mp-2125) <0 1 0> <1 1 0> 0.005 273.4
MgAl2O4 (mp-3536) <1 0 0> <0 0 1> 0.006 132.6
YAlO3 (mp-3792) <1 0 1> <0 0 1> 0.006 147.3
CdWO4 (mp-19387) <1 0 1> <1 0 1> 0.007 312.6
LaAlO3 (mp-2920) <0 0 1> <1 1 0> 0.008 151.9
NdGaO3 (mp-3196) <1 0 1> <1 0 0> 0.011 107.4
AlN (mp-661) <0 0 1> <1 1 0> 0.013 151.9
Fe3O4 (mp-19306) <1 0 0> <0 0 1> 0.015 73.7
Al2O3 (mp-1143) <0 0 1> <1 0 0> 0.015 279.3
NdGaO3 (mp-3196) <0 0 1> <1 1 0> 0.016 30.4
AlN (mp-661) <1 1 0> <1 1 1> 0.018 135.1
BaTiO3 (mp-5986) <1 0 0> <1 0 1> 0.018 234.4
Te2W (mp-22693) <1 0 0> <0 0 1> 0.018 294.6
SrTiO3 (mp-4651) <1 0 1> <1 0 0> 0.018 107.4
SiC (mp-7631) <1 0 1> <0 0 1> 0.018 235.7
LiGaO2 (mp-5854) <0 1 0> <0 0 1> 0.019 294.6
TeO2 (mp-2125) <0 1 1> <1 0 0> 0.019 150.4
BaTiO3 (mp-5986) <1 1 1> <1 1 1> 0.019 202.6
YVO4 (mp-19133) <1 0 0> <1 0 0> 0.020 279.3
CdWO4 (mp-19387) <1 1 0> <1 1 0> 0.020 121.5
TiO2 (mp-390) <1 1 1> <0 0 1> 0.021 162.0
Al2O3 (mp-1143) <1 0 0> <0 0 1> 0.021 250.4
SiC (mp-8062) <1 1 1> <0 0 1> 0.023 235.7
CeO2 (mp-20194) <1 0 0> <0 0 1> 0.024 29.5
Si (mp-149) <1 0 0> <0 0 1> 0.026 29.5
LiGaO2 (mp-5854) <1 1 1> <1 0 1> 0.026 338.6
YVO4 (mp-19133) <1 1 0> <0 0 1> 0.026 324.1
LaF3 (mp-905) <1 0 1> <1 0 1> 0.027 208.4
MgF2 (mp-1249) <1 0 0> <1 0 1> 0.028 130.2
TeO2 (mp-2125) <1 1 0> <0 0 1> 0.028 294.6
TiO2 (mp-2657) <0 0 1> <1 0 1> 0.029 130.2
MgO (mp-1265) <1 0 0> <0 0 1> 0.029 73.7
SiC (mp-7631) <1 0 0> <0 0 1> 0.029 235.7
TiO2 (mp-390) <0 0 1> <0 0 1> 0.031 14.7
GaSe (mp-1943) <1 0 1> <1 0 0> 0.031 279.3
TePb (mp-19717) <1 1 0> <0 0 1> 0.031 309.3
ZrO2 (mp-2858) <1 1 0> <1 0 0> 0.032 236.3
C (mp-48) <1 0 1> <1 1 1> 0.032 101.3
LaAlO3 (mp-2920) <1 0 0> <1 1 0> 0.034 212.7
MoSe2 (mp-1634) <1 0 0> <1 0 0> 0.035 257.8
TbScO3 (mp-31119) <1 1 1> <1 1 0> 0.035 212.7
Mg (mp-153) <1 0 0> <0 0 1> 0.036 221.0
GaSe (mp-1943) <1 1 1> <1 0 1> 0.036 234.4
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
30 5 8 0 0 0
5 30 8 0 0 0
8 8 59 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 5
Compliance Tensor Sij (10-12Pa-1)
35.3 -4.8 -4.4 0 0 0
-4.8 35.3 -4.4 0 0 0
-4.4 -4.4 18.2 0 0 0
0 0 0 301 0 0
0 0 0 0 301 0
0 0 0 0 0 192.1
Shear Modulus GV
9 GPa
Bulk Modulus KV
18 GPa
Shear Modulus GR
5 GPa
Bulk Modulus KR
16 GPa
Shear Modulus GVRH
7 GPa
Bulk Modulus KVRH
17 GPa
Elastic Anisotropy
3.35
Poisson's Ratio
0.32

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
24
U Values
--
Pseudopotentials
VASP PAW: Rb_sv N
Final Energy/Atom
-6.6205 eV
Corrected Energy
-26.4822 eV
-26.4822 eV = -26.4822 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 16963

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)