material

NaMgAs

ID:

mp-5962

DOI:

10.17188/1277203


Tags: Sodium magnesium arsenide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.641 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
2.88 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.955 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P4/nmm [129]
Hall
P 4ab 2ab 1ab
Point Group
4/mmm
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
InSb (mp-20012) <1 0 0> <0 0 1> 0.000 176.1
Au (mp-81) <1 0 0> <0 0 1> 0.000 156.5
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.000 176.1
CdTe (mp-406) <1 0 0> <0 0 1> 0.001 176.1
Al2O3 (mp-1143) <0 0 1> <1 1 0> 0.002 180.1
Ag (mp-124) <1 0 0> <0 0 1> 0.006 156.5
AlN (mp-661) <0 0 1> <1 1 0> 0.007 135.1
CdS (mp-672) <1 0 1> <1 0 1> 0.007 261.6
BN (mp-984) <1 0 0> <1 0 0> 0.008 350.2
NdGaO3 (mp-3196) <0 0 1> <1 0 1> 0.012 336.3
Ni (mp-23) <1 0 0> <0 0 1> 0.012 97.8
NdGaO3 (mp-3196) <1 1 0> <1 1 1> 0.014 245.5
CsI (mp-614603) <1 0 0> <1 1 1> 0.014 245.5
AlN (mp-661) <1 1 1> <1 0 0> 0.014 254.7
Te2W (mp-22693) <1 1 0> <1 0 0> 0.015 222.9
Mg (mp-153) <1 1 0> <1 0 1> 0.016 261.6
InP (mp-20351) <1 0 0> <0 0 1> 0.017 176.1
LaAlO3 (mp-2920) <1 0 0> <1 0 0> 0.019 286.5
Y3Fe5O12 (mp-19648) <1 0 0> <0 0 1> 0.019 156.5
BaF2 (mp-1029) <1 0 0> <0 0 1> 0.024 39.1
PbSe (mp-2201) <1 0 0> <0 0 1> 0.024 39.1
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.027 156.5
NdGaO3 (mp-3196) <0 1 1> <1 1 0> 0.027 315.2
Bi2Te3 (mp-34202) <0 0 1> <0 0 1> 0.028 136.9
LaF3 (mp-905) <1 0 0> <1 0 0> 0.029 159.2
AlN (mp-661) <1 0 1> <1 0 0> 0.033 159.2
Al2O3 (mp-1143) <1 0 1> <1 0 1> 0.038 261.6
GaSb (mp-1156) <1 0 0> <0 0 1> 0.039 39.1
MoSe2 (mp-1634) <0 0 1> <1 1 0> 0.039 180.1
WSe2 (mp-1821) <0 0 1> <1 1 0> 0.040 180.1
ZnO (mp-2133) <0 0 1> <1 1 0> 0.041 180.1
Bi2Te3 (mp-34202) <1 0 0> <0 0 1> 0.044 136.9
BaTiO3 (mp-5986) <1 1 1> <0 0 1> 0.044 313.0
MgF2 (mp-1249) <1 0 0> <0 0 1> 0.045 58.7
Te2W (mp-22693) <1 1 1> <1 1 0> 0.047 225.1
Au (mp-81) <1 1 0> <1 0 0> 0.050 222.9
InP (mp-20351) <1 1 0> <1 0 1> 0.053 149.5
CdSe (mp-2691) <1 0 0> <0 0 1> 0.053 39.1
LiAlO2 (mp-3427) <1 0 0> <1 1 1> 0.055 98.2
C (mp-66) <1 1 1> <0 0 1> 0.056 156.5
TbScO3 (mp-31119) <1 1 1> <1 0 0> 0.060 286.5
LaAlO3 (mp-2920) <0 0 1> <1 1 0> 0.061 180.1
CaCO3 (mp-3953) <0 0 1> <0 0 1> 0.063 156.5
BaF2 (mp-1029) <1 1 0> <1 1 0> 0.064 225.1
SiC (mp-11714) <1 0 0> <0 0 1> 0.066 254.3
SrTiO3 (mp-4651) <1 1 0> <1 1 1> 0.070 245.5
MgF2 (mp-1249) <1 0 1> <1 0 0> 0.073 159.2
Cu (mp-30) <1 1 1> <0 0 1> 0.079 156.5
Ag (mp-124) <1 1 0> <1 0 0> 0.081 222.9
SiC (mp-7631) <1 0 1> <1 0 1> 0.081 336.3
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
75 6 19 0 0 0
6 75 19 0 0 0
19 19 63 0 0 0
0 0 0 15 0 0
0 0 0 0 15 0
0 0 0 0 0 18
Compliance Tensor Sij (10-12Pa-1)
14.5 0 -4.5 0 0 0
0 14.5 -4.5 0 0 0
-4.5 -4.5 18.6 0 0 0
0 0 0 66.3 0 0
0 0 0 0 66.3 0
0 0 0 0 0 55.5
Shear Modulus GV
21 GPa
Bulk Modulus KV
33 GPa
Shear Modulus GR
19 GPa
Bulk Modulus KR
33 GPa
Shear Modulus GVRH
20 GPa
Bulk Modulus KVRH
33 GPa
Elastic Anisotropy
0.49
Poisson's Ratio
0.25

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
9.00 0.00 0.00
0.00 9.00 0.00
0.00 0.00 6.91
Dielectric Tensor εij (total)
22.18 0.00 0.00
0.00 22.18 0.00
0.00 0.00 11.32
Polycrystalline dielectric constant εpoly
(electronic contribution)
8.31
Polycrystalline dielectric constant εpoly
(total)
18.56
Refractive Index n
2.88
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
20
U Values
--
Pseudopotentials
VASP PAW: Na_pv Mg_pv As
Final Energy/Atom
-3.1628 eV
Corrected Energy
-18.9768 eV
-18.9768 eV = -18.9768 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.83 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.83 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
2.72 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
2.72 eV
derivative discontinuity
functional
GLLB-SC
0.89 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 402339
  • 610829
  • 41798

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)