material

Ni3O4

ID:

mp-714961

DOI:

10.17188/1286654


Material Details

Final Magnetic Moment
-0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
AFM
Formation Energy / Atom
-0.824 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.72 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.251 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Cmmm [65]
Hall
-C 2 2
Point Group
2/m
Crystal System
orthorhombic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
DyScO3 (mp-31120) <0 0 1> <1 0 0> 0.002 94.0
TePb (mp-19717) <1 0 0> <1 0 1> 0.008 215.9
ZrO2 (mp-2858) <1 0 -1> <0 1 0> 0.014 289.5
LiGaO2 (mp-5854) <1 0 1> <1 0 1> 0.017 269.8
GaAs (mp-2534) <1 0 0> <1 1 0> 0.017 232.2
TbScO3 (mp-31119) <0 0 1> <1 0 0> 0.023 94.0
Ge (mp-32) <1 1 0> <1 0 0> 0.024 47.0
CaF2 (mp-2741) <1 1 0> <1 0 0> 0.024 258.6
ZnSe (mp-1190) <1 0 0> <1 1 0> 0.030 232.2
LiF (mp-1138) <1 0 0> <1 1 0> 0.031 116.1
GaP (mp-2490) <1 1 0> <1 0 0> 0.035 258.6
MgAl2O4 (mp-3536) <1 1 0> <1 0 0> 0.036 94.0
GaAs (mp-2534) <1 1 0> <1 0 0> 0.036 47.0
CdWO4 (mp-19387) <1 1 0> <0 1 0> 0.041 204.3
SiO2 (mp-6930) <1 1 1> <1 0 0> 0.042 211.6
Al (mp-134) <1 1 1> <1 0 0> 0.044 141.1
Ga2O3 (mp-886) <1 0 0> <0 0 1> 0.045 145.7
InSb (mp-20012) <1 1 0> <1 0 0> 0.049 188.1
LiTaO3 (mp-3666) <0 0 1> <0 1 0> 0.050 187.3
C (mp-48) <0 0 1> <1 1 1> 0.050 169.8
KTaO3 (mp-3614) <1 1 1> <1 0 0> 0.051 141.1
ZnSe (mp-1190) <1 1 0> <1 0 0> 0.055 47.0
ZnO (mp-2133) <0 0 1> <1 0 0> 0.057 47.0
LaAlO3 (mp-2920) <1 0 0> <1 0 1> 0.058 215.9
CdTe (mp-406) <1 1 0> <1 0 0> 0.059 188.1
WS2 (mp-224) <1 1 1> <1 0 0> 0.059 235.1
NdGaO3 (mp-3196) <0 1 0> <1 0 0> 0.066 258.6
C (mp-48) <1 1 1> <1 0 0> 0.074 235.1
Te2Mo (mp-602) <0 0 1> <0 1 0> 0.078 153.2
AlN (mp-661) <0 0 1> <1 0 0> 0.084 117.6
Ga2O3 (mp-886) <1 0 -1> <0 1 0> 0.086 153.2
MgAl2O4 (mp-3536) <1 1 1> <1 1 0> 0.088 116.1
LiNbO3 (mp-3731) <0 0 1> <0 1 0> 0.093 187.3
SiO2 (mp-6930) <0 0 1> <1 1 0> 0.095 87.1
TiO2 (mp-390) <1 0 0> <0 1 0> 0.099 221.4
BN (mp-984) <0 0 1> <1 1 0> 0.106 87.1
MgF2 (mp-1249) <1 1 0> <1 0 1> 0.115 161.9
SiC (mp-7631) <1 0 0> <0 1 0> 0.117 238.4
SiC (mp-11714) <1 0 0> <0 1 0> 0.121 187.3
SiC (mp-8062) <1 1 1> <1 0 0> 0.121 235.1
CdWO4 (mp-19387) <1 0 1> <0 1 0> 0.125 221.4
GdScO3 (mp-5690) <1 0 1> <0 1 0> 0.126 170.3
SiC (mp-7631) <0 0 1> <1 0 0> 0.138 117.6
MgO (mp-1265) <1 1 1> <0 1 0> 0.146 187.3
SiC (mp-11714) <0 0 1> <1 0 0> 0.146 117.6
SiC (mp-11714) <1 1 1> <0 1 0> 0.150 272.4
Mg (mp-153) <1 0 0> <1 0 0> 0.154 164.6
Te2Mo (mp-602) <1 1 1> <0 1 0> 0.155 289.5
WS2 (mp-224) <0 0 1> <1 1 0> 0.155 116.1
MoS2 (mp-1434) <0 0 1> <1 1 0> 0.156 116.1
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
207 96 97 0 0 0
96 249 73 0 0 0
97 73 313 0 0 0
0 0 0 77 0 0
0 0 0 0 72 0
0 0 0 0 0 81
Compliance Tensor Sij (10-12Pa-1)
6.5 -2.1 -1.5 0 0 0
-2.1 5 -0.5 0 0 0
-1.5 -0.5 3.8 0 0 0
0 0 0 13 0 0
0 0 0 0 13.8 0
0 0 0 0 0 12.4
Shear Modulus GV
80 GPa
Bulk Modulus KV
144 GPa
Shear Modulus GR
77 GPa
Bulk Modulus KR
142 GPa
Shear Modulus GVRH
78 GPa
Bulk Modulus KVRH
143 GPa
Elastic Anisotropy
0.19
Poisson's Ratio
0.27

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
48
U Values
Ni: 6.2 eV
Pseudopotentials
VASP PAW: Ni_pv O
Final Energy/Atom
-4.7914 eV
Corrected Energy
-85.6819 eV
-85.6819 eV = -67.0796 eV (uncorrected energy) - 12.9840 eV (MP Advanced Correction) - 5.6183 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
Submitted by
User remarks:
  • Pourbaix app compounds

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)