material

CoO2

ID:

mp-715480

DOI:

10.17188/1287050


Material Details

Final Magnetic Moment
-0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
AFM
Formation Energy / Atom
-1.124 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.014 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.55 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
CoO2
Band Gap
1.217 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
R3m [166]
Hall
-R 3 2"
Point Group
2/m
Crystal System
trigonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
TiO2 (mp-2657) <1 1 1> <0 0 1> -2.292 266.0
WSe2 (mp-1821) <1 0 0> <0 0 1> -2.130 252.0
TiO2 (mp-390) <1 1 1> <0 0 1> -1.841 328.9
KP(HO2)2 (mp-23959) <0 0 1> <0 0 1> -1.678 300.9
GdScO3 (mp-5690) <1 0 0> <0 0 1> -1.614 140.0
Au (mp-81) <1 1 0> <0 0 1> -1.569 175.0
Ag (mp-124) <1 1 0> <0 0 1> -1.543 175.0
ZrO2 (mp-2858) <0 0 1> <0 0 1> -1.510 217.0
Ni (mp-23) <1 0 0> <0 0 1> -1.500 63.0
TbScO3 (mp-31119) <1 0 0> <0 0 1> -1.484 140.0
C (mp-66) <1 0 0> <0 0 1> -1.471 63.0
GaN (mp-804) <1 0 1> <0 0 1> -1.467 77.0
LiAlO2 (mp-3427) <0 0 1> <0 0 1> -1.427 245.0
YAlO3 (mp-3792) <0 1 1> <0 0 1> -1.399 286.9
TiO2 (mp-390) <0 0 1> <0 0 1> -1.381 147.0
MgF2 (mp-1249) <1 0 0> <0 0 1> -1.378 147.0
DyScO3 (mp-31120) <1 0 0> <0 0 1> -1.328 140.0
SiC (mp-11714) <1 1 0> <0 0 1> -1.312 328.9
CeO2 (mp-20194) <1 0 0> <0 0 1> -1.269 147.0
Si (mp-149) <1 0 0> <0 0 1> -1.264 147.0
BN (mp-984) <1 0 0> <0 0 1> -1.228 77.0
ZrO2 (mp-2858) <1 1 1> <0 0 1> -1.213 203.0
KP(HO2)2 (mp-23959) <0 1 0> <0 0 1> -1.199 300.9
MgF2 (mp-1249) <1 1 1> <0 0 1> -1.121 210.0
YAlO3 (mp-3792) <1 1 0> <0 0 1> -1.112 273.0
KCl (mp-23193) <1 0 0> <0 0 1> -1.098 245.0
SiO2 (mp-6930) <1 0 1> <0 0 1> -1.047 35.0
GaSe (mp-1943) <1 0 0> <0 0 1> -1.032 273.0
Te2Mo (mp-602) <1 0 0> <0 0 1> -0.965 266.0
ZrO2 (mp-2858) <1 0 0> <0 0 1> -0.935 175.0
CdS (mp-672) <1 1 0> <0 0 1> -0.862 252.0
CdS (mp-672) <1 0 1> <0 0 1> -0.851 231.0
BN (mp-984) <1 1 1> <0 0 1> -0.841 273.0
AlN (mp-661) <1 0 0> <0 0 1> -0.799 140.0
Mg (mp-153) <1 1 0> <0 0 1> -0.783 203.0
TeO2 (mp-2125) <0 1 1> <0 0 1> -0.773 300.9
Au (mp-81) <1 0 0> <0 0 1> -0.717 266.0
SiC (mp-11714) <1 1 1> <0 0 1> -0.706 328.9
Mg (mp-153) <1 0 1> <0 0 1> -0.704 189.0
MgF2 (mp-1249) <1 1 0> <0 0 1> -0.700 245.0
SiO2 (mp-6930) <1 1 0> <0 0 1> -0.696 335.9
BaTiO3 (mp-5986) <1 1 1> <0 0 1> -0.690 231.0
BaTiO3 (mp-5986) <1 0 0> <0 0 1> -0.642 182.0
ZrO2 (mp-2858) <1 0 -1> <0 0 1> -0.594 147.0
InAs (mp-20305) <1 0 0> <0 0 1> -0.585 189.0
ZnTe (mp-2176) <1 0 0> <0 0 1> -0.578 189.0
TiO2 (mp-2657) <1 0 0> <0 0 1> -0.558 175.0
GaN (mp-804) <1 1 0> <0 0 1> -0.529 231.0
Al2O3 (mp-1143) <1 0 1> <0 0 1> -0.484 203.0
CdWO4 (mp-19387) <0 1 0> <0 0 1> -0.465 105.0
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
-120 246 9 -63 -0 -0
246 -120 9 63 0 -0
9 9 13 -0 -0 0
-63 63 -0 3 0 0
-0 0 -0 0 3 -63
-0 -0 0 0 -63 -183
Compliance Tensor Sij (10-12Pa-1)
4.2 4.5 -6 -7.1 0 0
4.5 4.2 -6 7.1 0 0
-6 -6 87.8 0 0 0
-7.1 7.1 0 41.5 0 0
0 0 0 0 41.5 -14.3
0 0 0 0 -14.3 -0.6
Shear Modulus GV
-68 GPa
Bulk Modulus KV
33 GPa
Shear Modulus GR
23 GPa
Bulk Modulus KR
12 GPa
Shear Modulus GVRH
-23 GPa
Bulk Modulus KVRH
23 GPa
Elastic Anisotropy
-18.36
Poisson's Ratio
1.25

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
256
U Values
Co: 3.32 eV
Pseudopotentials
VASP PAW: Co O
Final Energy/Atom
-5.6913 eV
Corrected Energy
-40.7052 eV
-40.7052 eV = -34.1480 eV (uncorrected energy) - 3.7480 eV (MP Advanced Correction) - 2.8092 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
Submitted by
User remarks:
  • ordering of disordered crystal

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)