material

V2O3

ID:

mp-715514

DOI:

10.17188/1287055


Tags: High pressure experimental phase Karelianite low Vanadium(III) oxide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Ferri
Formation Energy / Atom
-2.517 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.013 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.64 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
V2O3
Band Gap
1.580 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
C2/c [15]
Hall
-C 2yc
Point Group
2/m
Crystal System
monoclinic
We have not yet calculated a detailed bandstructure for this material

X-Ray Diffraction

    Select radiation source:
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
No elastic tensor calculated for this material, so elastic energies not avaialable. Sorting by MCIA instead.
substrate material substrate orientation film orientation MCIA [Å2]
CeO2 (mp-20194) <1 1 0> <1 0 0> 87.1
GaAs (mp-2534) <1 0 0> <1 0 0> 232.4
GaAs (mp-2534) <1 1 0> <0 1 1> 184.9
BaF2 (mp-1029) <1 1 0> <0 0 1> 227.5
BaF2 (mp-1029) <1 1 1> <0 0 1> 136.5
GaN (mp-804) <0 0 1> <1 0 0> 145.2
GaN (mp-804) <1 0 0> <1 0 1> 65.9
GaN (mp-804) <1 1 0> <1 0 0> 29.0
GaN (mp-804) <1 1 1> <1 1 0> 152.1
SiO2 (mp-6930) <1 0 0> <1 0 0> 29.0
SiO2 (mp-6930) <1 1 1> <1 0 -1> 153.8
KCl (mp-23193) <1 1 0> <0 0 1> 227.5
DyScO3 (mp-31120) <0 0 1> <1 0 0> 232.4
DyScO3 (mp-31120) <0 1 0> <1 0 0> 319.5
DyScO3 (mp-31120) <1 0 1> <1 0 0> 319.5
DyScO3 (mp-31120) <1 1 1> <1 1 -1> 283.2
InAs (mp-20305) <1 1 0> <0 0 1> 273.0
ZnSe (mp-1190) <1 0 0> <1 0 0> 232.4
ZnSe (mp-1190) <1 1 0> <0 1 1> 184.9
KTaO3 (mp-3614) <1 0 0> <0 1 1> 246.5
AlN (mp-661) <0 0 1> <1 1 -1> 169.9
AlN (mp-661) <1 0 0> <1 0 0> 145.2
AlN (mp-661) <1 0 1> <1 0 -1> 192.3
AlN (mp-661) <1 1 0> <1 0 -1> 115.4
AlN (mp-661) <1 1 1> <1 0 -1> 307.6
CeO2 (mp-20194) <1 0 0> <1 1 1> 233.9
CdS (mp-672) <1 0 0> <1 0 1> 263.8
CdS (mp-672) <1 0 1> <1 0 0> 261.4
CdS (mp-672) <1 1 0> <1 0 -1> 153.8
LiF (mp-1138) <1 0 0> <1 0 0> 261.4
BaF2 (mp-1029) <1 0 0> <0 0 1> 318.5
Te2W (mp-22693) <0 1 0> <1 1 1> 155.9
Te2W (mp-22693) <1 0 1> <1 0 1> 197.8
Te2W (mp-22693) <1 1 0> <1 0 -1> 115.4
YVO4 (mp-19133) <0 0 1> <1 0 -1> 153.8
GaN (mp-804) <1 0 1> <1 0 0> 261.4
SiO2 (mp-6930) <0 0 1> <0 0 1> 45.5
SiO2 (mp-6930) <1 0 1> <1 0 0> 145.2
SiO2 (mp-6930) <1 1 0> <1 0 0> 145.2
KCl (mp-23193) <1 0 0> <0 0 1> 318.5
KCl (mp-23193) <1 1 1> <0 0 1> 136.5
TePb (mp-19717) <1 0 0> <1 1 0> 304.3
Te2Mo (mp-602) <1 0 0> <0 0 1> 273.0
Te2Mo (mp-602) <1 0 1> <0 0 1> 273.0
DyScO3 (mp-31120) <0 1 1> <1 0 1> 329.7
DyScO3 (mp-31120) <1 0 0> <1 0 0> 319.5
Ag (mp-124) <1 0 0> <1 0 1> 263.8
InAs (mp-20305) <1 0 0> <0 0 1> 227.5
InAs (mp-20305) <1 1 1> <0 0 1> 136.5
KTaO3 (mp-3614) <1 1 0> <1 0 0> 116.2
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.

Once you have registered you can also "vote" for full calculation of this material's elastic properties.

Similar Structures beta feature

Explanation of dissimilarity measure: Documentation.
material dissimilarity Ehull # of elements
MgFe11O18 (mp-768004) 0.1541 0.061 3
VCrO3 (mp-770855) 0.1541 0.008 3
VCrO3 (mp-770778) 0.1632 0.010 3
VCrO3 (mp-769640) 0.1664 0.007 3
VCrO3 (mp-770849) 0.1647 0.008 3
Mg2VWO6 (mvc-5881) 0.2617 0.031 4
Mg2TiWO6 (mvc-5939) 0.3042 0.062 4
Mg2CrWO6 (mvc-5960) 0.3339 0.048 4
InNi2SbO6 (mp-1078367) 0.2455 0.000 4
ScNi2SbO6 (mp-1078244) 0.2721 0.000 4
V2O3 (mp-714863) 0.1835 0.012 2
V2O3 (mp-562005) 0.1757 0.013 2
Fe2O3 (mp-714977) 0.1922 0.000 2
V2O3 (mp-18937) 0.1838 0.012 2
Al2O3 (mp-1143) 0.1820 0.000 2
Li4Fe2TeWO12 (mp-768021) 0.5664 0.075 5
Li4Cr2TeWO12 (mp-775566) 0.6997 0.080 5
Li4MnV2WO12 (mp-773239) 0.7426 0.091 5
Li4Mn2TeWO12 (mp-768044) 0.6557 0.059 5
Li4V2CrTeO12 (mp-775632) 0.7056 0.103 5
Up to 5 similar elemental, binary, ternary, quaternary, etc. structures displayed (dissimilarity threshold 0.75). Ehull: energy above hull per atom [eV].

Synthesis Descriptions

All of the chemicals used were analytical grade reagents purchased from Shanghai Chemical Company and were used without further purification. In a typical procedure for synthesizing precursor VEG, NH4 [...]
Phase equilibrium relations in the V2O3-La2O3 system were investigated by X-ray powder diffraction and metallographic techniques. Binary mixtures, prepared from high-purity V2O3 and La2O3 powders, wer [...]
chef hat mixing beaker

Explore more synthesis descriptions for materials of composition V2O3.

Text computed by synthesisproject.org.

Calculation Summary

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
None
U Values
V: 3.25 eV
Pseudopotentials
VASP PAW: V_pv O
Final Energy/Atom
-8.0193 eV
Corrected Energy
-91.1343 eV
-91.1343 eV = -80.1925 eV (uncorrected energy) - 6.7280 eV (MP Advanced Correction) - 4.2137 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 95763
  • 6286
  • 95762
  • 97442
Submitted by
User remarks:
  • High pressure experimental phase
  • Divanadium(III) oxide - LT

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)