material

KCuTe

ID:

mp-7436

DOI:

10.17188/1288019


Tags: Copper potassium telluride (1/1/1)

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.596 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.35 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.604 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P63/mmc [194]
Hall
-P 6c 2c
Point Group
6/mmm
Crystal System
hexagonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Te2Mo (mp-602) <0 0 1> <0 0 1> 0.003 207.9
SiC (mp-11714) <1 1 0> <1 0 0> 0.005 272.6
SiC (mp-11714) <1 0 0> <1 1 0> 0.005 157.4
Si (mp-149) <1 1 1> <0 0 1> 0.006 52.0
NaCl (mp-22862) <1 1 1> <0 0 1> 0.006 225.2
CeO2 (mp-20194) <1 1 1> <0 0 1> 0.007 52.0
ZnO (mp-2133) <0 0 1> <0 0 1> 0.009 121.3
TePb (mp-19717) <1 1 1> <0 0 1> 0.014 225.2
TiO2 (mp-390) <1 1 1> <1 0 0> 0.017 272.6
Au (mp-81) <1 1 1> <0 0 1> 0.018 121.3
TiO2 (mp-2657) <1 1 0> <1 0 0> 0.022 136.3
SiC (mp-11714) <1 1 1> <1 0 0> 0.023 272.6
YAlO3 (mp-3792) <0 0 1> <1 0 1> 0.023 340.4
GaN (mp-804) <1 1 1> <1 0 1> 0.025 243.1
NdGaO3 (mp-3196) <0 0 1> <1 0 1> 0.035 243.1
LiF (mp-1138) <1 0 0> <1 0 0> 0.038 318.0
LaAlO3 (mp-2920) <1 0 1> <0 0 1> 0.045 225.2
CdWO4 (mp-19387) <1 1 0> <1 0 1> 0.045 243.1
SiC (mp-11714) <0 0 1> <0 0 1> 0.053 155.9
Bi2Te3 (mp-34202) <0 0 1> <0 0 1> 0.053 17.3
Fe2O3 (mp-24972) <0 0 1> <0 0 1> 0.055 69.3
GaP (mp-2490) <1 1 1> <0 0 1> 0.055 52.0
SiC (mp-7631) <0 0 1> <0 0 1> 0.059 155.9
C (mp-48) <0 0 1> <0 0 1> 0.061 69.3
Ag (mp-124) <1 1 1> <0 0 1> 0.061 121.3
BN (mp-984) <1 0 0> <1 1 0> 0.064 78.7
LiAlO2 (mp-3427) <1 1 1> <1 0 0> 0.065 272.6
Cu (mp-30) <1 0 0> <0 0 1> 0.066 277.2
ZrO2 (mp-2858) <1 0 0> <1 0 1> 0.066 340.4
CeO2 (mp-20194) <1 0 0> <1 1 0> 0.068 236.1
Si (mp-149) <1 0 0> <1 1 0> 0.070 236.1
Te2Mo (mp-602) <1 0 1> <0 0 1> 0.071 277.2
BaF2 (mp-1029) <1 1 1> <0 0 1> 0.089 69.3
LaAlO3 (mp-2920) <0 0 1> <0 0 1> 0.091 225.2
MoSe2 (mp-1634) <1 0 1> <1 0 0> 0.092 318.0
CdTe (mp-406) <1 1 1> <0 0 1> 0.097 225.2
CaF2 (mp-2741) <1 1 1> <0 0 1> 0.099 52.0
ZnSe (mp-1190) <1 1 1> <0 0 1> 0.104 225.2
SiC (mp-7631) <1 0 1> <1 1 1> 0.106 241.7
MoSe2 (mp-1634) <1 0 0> <1 1 0> 0.106 157.4
BaTiO3 (mp-5986) <1 1 1> <1 0 0> 0.114 227.2
Te2Mo (mp-602) <1 0 0> <0 0 1> 0.115 277.2
InSb (mp-20012) <1 1 1> <0 0 1> 0.116 225.2
LiGaO2 (mp-5854) <1 1 1> <1 0 0> 0.125 272.6
BaF2 (mp-1029) <1 1 0> <0 0 1> 0.126 277.2
CdWO4 (mp-19387) <0 0 1> <0 0 1> 0.131 277.2
Al2O3 (mp-1143) <0 0 1> <1 0 0> 0.134 318.0
AlN (mp-661) <1 1 1> <0 0 1> 0.135 225.2
LiTaO3 (mp-3666) <0 0 1> <0 0 1> 0.146 69.3
GaAs (mp-2534) <1 1 1> <0 0 1> 0.148 225.2
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
81 29 9 0 0 0
29 81 9 0 0 0
9 9 34 0 0 0
0 0 0 12 0 0
0 0 0 0 12 0
0 0 0 0 0 26
Compliance Tensor Sij (10-12Pa-1)
14.4 -4.9 -2.6 0 0 0
-4.9 14.4 -2.6 0 0 0
-2.6 -2.6 30.9 0 0 0
0 0 0 86.2 0 0
0 0 0 0 86.2 0
0 0 0 0 0 38.6
Shear Modulus GV
20 GPa
Bulk Modulus KV
32 GPa
Shear Modulus GR
16 GPa
Bulk Modulus KR
25 GPa
Shear Modulus GVRH
18 GPa
Bulk Modulus KVRH
29 GPa
Elastic Anisotropy
1.27
Poisson's Ratio
0.24

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
11.41 0.00 0.00
0.00 11.41 0.00
0.00 0.00 4.10
Dielectric Tensor εij (total)
14.77 0.00 0.00
0.00 14.77 0.00
0.00 0.00 6.61
Polycrystalline dielectric constant εpoly
(electronic contribution)
8.97
Polycrystalline dielectric constant εpoly
(total)
12.05
Refractive Index n
3.00
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
30
U Values
--
Pseudopotentials
VASP PAW: K_sv Cu_pv Te
Final Energy/Atom
-3.3759 eV
Corrected Energy
-20.2554 eV
-20.2554 eV = -20.2554 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.15 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.15 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.65 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.65 eV
derivative discontinuity
functional
GLLB-SC
0.50 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 12158

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)