material

Cu3P

ID:

mp-7540

DOI:

10.17188/1289210


Tags: Copper(I) phosphide - HT

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
0.014 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.058 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
7.23 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
CuP2 + Cu
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P3m1 [164]
Hall
-P 3 2"
Point Group
3m
Crystal System
trigonal
We have not yet calculated a detailed bandstructure for this material
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
TiO2 (mp-390) <1 0 1> <0 0 1> -0.035 199.3
Te2W (mp-22693) <0 0 1> <0 0 1> -0.026 199.3
NdGaO3 (mp-3196) <0 0 1> <0 0 1> -0.020 213.6
CdS (mp-672) <1 0 1> <0 0 1> -0.007 227.8
SiC (mp-11714) <1 0 1> <0 0 1> -0.002 227.8
KTaO3 (mp-3614) <1 0 0> <0 0 1> -0.002 113.9
SiC (mp-8062) <1 1 1> <0 0 1> 0.000 99.7
Al (mp-134) <1 0 0> <0 0 1> 0.001 113.9
MgF2 (mp-1249) <1 1 0> <0 0 1> 0.003 327.5
DyScO3 (mp-31120) <1 0 0> <0 0 1> 0.003 227.8
CdTe (mp-406) <1 1 1> <0 0 1> 0.003 227.8
Ag (mp-124) <1 1 1> <0 0 1> 0.004 270.5
MgAl2O4 (mp-3536) <1 1 0> <0 0 1> 0.004 284.8
Au (mp-81) <1 1 1> <0 0 1> 0.004 270.5
ZnSe (mp-1190) <1 1 1> <0 0 1> 0.005 57.0
TiO2 (mp-390) <1 1 1> <0 0 1> 0.005 327.5
WS2 (mp-224) <1 0 0> <0 0 1> 0.007 227.8
InSb (mp-20012) <1 1 1> <0 0 1> 0.007 227.8
NaCl (mp-22862) <1 1 0> <0 0 1> 0.008 227.8
GaN (mp-804) <0 0 1> <0 0 1> 0.008 170.9
InP (mp-20351) <1 1 1> <0 0 1> 0.009 185.1
YVO4 (mp-19133) <1 0 0> <0 0 1> 0.011 185.1
NaCl (mp-22862) <1 0 0> <0 0 1> 0.011 227.8
Ga2O3 (mp-886) <1 0 0> <1 0 1> 0.012 290.7
C (mp-48) <0 0 1> <0 0 1> 0.015 99.7
GaAs (mp-2534) <1 1 1> <0 0 1> 0.018 57.0
MgF2 (mp-1249) <1 1 1> <0 0 1> 0.023 299.0
YAlO3 (mp-3792) <0 1 0> <1 1 1> 0.027 156.6
PbSe (mp-2201) <1 1 1> <0 0 1> 0.029 270.5
CdWO4 (mp-19387) <1 1 1> <0 0 1> 0.029 256.3
TiO2 (mp-2657) <1 0 0> <1 1 1> 0.029 208.8
BN (mp-984) <1 1 0> <0 0 1> 0.029 270.5
AlN (mp-661) <1 0 0> <0 0 1> 0.033 142.4
Ge(Bi3O5)4 (mp-23352) <1 1 1> <0 0 1> 0.034 185.1
KTaO3 (mp-3614) <1 1 0> <0 0 1> 0.034 113.9
ZrO2 (mp-2858) <1 0 1> <1 0 1> 0.035 129.2
BN (mp-984) <0 0 1> <0 0 1> 0.039 170.9
DyScO3 (mp-31120) <0 0 1> <0 0 1> 0.041 341.7
MgO (mp-1265) <1 0 0> <1 0 1> 0.044 290.7
TbScO3 (mp-31119) <1 0 0> <0 0 1> 0.052 227.8
GaSb (mp-1156) <1 1 1> <0 0 1> 0.053 270.5
CdWO4 (mp-19387) <0 1 1> <1 0 1> 0.056 161.5
ZnO (mp-2133) <1 1 1> <1 1 0> 0.057 251.1
Ge (mp-32) <1 1 1> <0 0 1> 0.058 57.0
LiNbO3 (mp-3731) <1 0 0> <0 0 1> 0.058 299.0
PbS (mp-21276) <1 0 0> <1 0 1> 0.063 290.7
ZnO (mp-2133) <1 1 0> <0 0 1> 0.066 299.0
Ag (mp-124) <1 0 0> <0 0 1> 0.068 85.4
TiO2 (mp-390) <1 0 0> <0 0 1> 0.069 256.3
DyScO3 (mp-31120) <1 1 0> <1 1 0> 0.069 251.1
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
141 152 72 13 0 0
152 141 72 -13 0 0
72 72 248 0 0 0
13 -13 0 23 0 0
0 0 0 0 23 13
0 0 0 0 13 -5
Compliance Tensor Sij (10-12Pa-1)
-18.1 22.1 -1.1 22 0 0
22.1 -18.1 -1.1 -22 0 0
-1.1 -1.1 4.7 0 0 0
22 -22 0 19.1 0 0
0 0 0 0 19.1 44.1
0 0 0 0 44.1 -80.5
Shear Modulus GV
24 GPa
Bulk Modulus KV
125 GPa
Shear Modulus GR
-45 GPa
Bulk Modulus KR
124 GPa
Shear Modulus GVRH
-11 GPa
Bulk Modulus KVRH
125 GPa
Elastic Anisotropy
-7.64
Poisson's Ratio
0.54

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
35
U Values
--
Pseudopotentials
VASP PAW: P Cu_pv
Final Energy/Atom
-4.4111 eV
Corrected Energy
-35.2891 eV
-35.2891 eV = -35.2891 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 16247

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)