material

LiZnN

ID:

mp-7575

DOI:

10.17188/1290823


Tags: Lithium zinc nitride

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.389 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.77 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.508 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
F43m [216]
Hall
F 4 2 3
Point Group
43m
Crystal System
cubic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
KTaO3 (mp-3614) <1 1 0> <1 1 0> 0.000 68.9
TiO2 (mp-2657) <0 0 1> <1 0 0> 0.000 194.9
CaF2 (mp-2741) <1 0 0> <1 0 0> 0.000 121.8
LiAlO2 (mp-3427) <0 0 1> <1 0 0> 0.002 219.2
CdTe (mp-406) <1 0 0> <1 0 0> 0.002 219.2
NaCl (mp-22862) <1 1 1> <1 1 1> 0.003 168.8
NaCl (mp-22862) <1 1 0> <1 1 0> 0.003 137.8
Cu (mp-30) <1 1 1> <1 1 1> 0.004 295.4
InSb (mp-20012) <1 0 0> <1 0 0> 0.006 219.2
Fe3O4 (mp-19306) <1 1 1> <1 1 1> 0.006 126.6
Fe3O4 (mp-19306) <1 1 0> <1 1 0> 0.006 103.4
BN (mp-984) <0 0 1> <1 1 1> 0.007 168.8
Al (mp-134) <1 1 0> <1 1 0> 0.009 68.9
GaP (mp-2490) <1 0 0> <1 0 0> 0.009 121.8
AlN (mp-661) <1 0 1> <1 0 0> 0.012 268.0
PbSe (mp-2201) <1 0 0> <1 0 0> 0.013 194.9
Fe2O3 (mp-24972) <0 0 1> <1 1 1> 0.016 295.4
NdGaO3 (mp-3196) <1 1 0> <1 0 0> 0.017 121.8
WS2 (mp-224) <0 0 1> <1 1 1> 0.024 168.8
MoS2 (mp-1434) <0 0 1> <1 1 1> 0.024 168.8
ZrO2 (mp-2858) <0 0 1> <1 0 0> 0.028 219.2
Mg (mp-153) <1 1 1> <1 0 0> 0.028 121.8
GaSb (mp-1156) <1 0 0> <1 0 0> 0.029 194.9
YAlO3 (mp-3792) <0 1 0> <1 1 0> 0.029 310.1
C (mp-48) <1 0 1> <1 1 0> 0.030 241.2
MgO (mp-1265) <1 1 1> <1 1 1> 0.030 126.6
C (mp-48) <1 0 0> <1 0 0> 0.031 268.0
MgO (mp-1265) <1 1 0> <1 1 0> 0.031 103.4
GaN (mp-804) <0 0 1> <1 1 1> 0.031 168.8
Ni (mp-23) <1 1 1> <1 0 0> 0.039 170.5
CdSe (mp-2691) <1 0 0> <1 0 0> 0.045 194.9
Ni (mp-23) <1 1 0> <1 1 0> 0.048 34.5
Ni (mp-23) <1 0 0> <1 0 0> 0.051 24.4
TePb (mp-19717) <1 1 1> <1 1 1> 0.056 295.4
Mg (mp-153) <0 0 1> <1 1 1> 0.060 168.8
LiF (mp-1138) <1 0 0> <1 0 0> 0.062 219.2
CdWO4 (mp-19387) <1 0 0> <1 1 1> 0.063 126.6
ZnO (mp-2133) <1 0 1> <1 1 1> 0.064 295.4
YAlO3 (mp-3792) <0 1 1> <1 1 1> 0.069 337.6
GaN (mp-804) <1 1 1> <1 0 0> 0.075 121.8
LiGaO2 (mp-5854) <1 1 1> <1 1 0> 0.076 275.6
BaF2 (mp-1029) <1 0 0> <1 0 0> 0.079 194.9
PbS (mp-21276) <1 1 0> <1 1 0> 0.084 103.4
LiAlO2 (mp-3427) <1 1 1> <1 0 0> 0.089 219.2
GdScO3 (mp-5690) <0 1 1> <1 1 0> 0.092 275.6
C (mp-48) <0 0 1> <1 0 0> 0.093 170.5
CsI (mp-614603) <1 0 0> <1 0 0> 0.097 121.8
ZnSe (mp-1190) <1 1 1> <1 1 1> 0.100 168.8
ZnSe (mp-1190) <1 1 0> <1 1 0> 0.103 137.8
WSe2 (mp-1821) <0 0 1> <1 1 1> 0.104 126.6
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
271 38 38 0 0 0
38 271 38 0 0 0
38 38 271 0 0 0
0 0 0 69 0 0
0 0 0 0 69 0
0 0 0 0 0 69
Compliance Tensor Sij (10-12Pa-1)
3.8 -0.5 -0.5 0 0 0
-0.5 3.8 -0.5 0 0 0
-0.5 -0.5 3.8 0 0 0
0 0 0 14.6 0 0
0 0 0 0 14.6 0
0 0 0 0 0 14.6
Shear Modulus GV
88 GPa
Bulk Modulus KV
116 GPa
Shear Modulus GR
82 GPa
Bulk Modulus KR
116 GPa
Shear Modulus GVRH
85 GPa
Bulk Modulus KVRH
116 GPa
Elastic Anisotropy
0.35
Poisson's Ratio
0.21

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 -0.50861 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.50861 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 -0.50861
Piezoelectric Modulus ‖eijmax
0.29365 C/m2
Crystallographic Direction vmax
1.00000
1.00000
1.00000

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
10.54 -0.00 0.00
-0.00 10.54 0.00
0.00 0.00 10.54
Dielectric Tensor εij (total)
20.40 -0.00 0.00
-0.00 20.40 0.00
0.00 0.00 20.40
Polycrystalline dielectric constant εpoly
(electronic contribution)
10.54
Polycrystalline dielectric constant εpoly
(total)
20.40
Refractive Index n
3.25
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
60
U Values
--
Pseudopotentials
VASP PAW: Li_sv N Zn
Final Energy/Atom
-4.1003 eV
Corrected Energy
-12.3008 eV
-12.3008 eV = -12.3008 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
0.95 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
0.95 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.39 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.39 eV
derivative discontinuity
functional
GLLB-SC
0.44 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 16790

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)