material

GeAs

ID:

mp-7591

DOI:

10.17188/1291348


Tags: Germanium(III) arsenide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
0.053 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.096 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.80 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
GeAs
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4mm [107]
Hall
I 4 2
Point Group
4mm
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Au (mp-81) <1 0 0> <0 0 1> 0.001 69.7
BaTiO3 (mp-5986) <1 0 0> <1 0 1> 0.007 186.0
WS2 (mp-224) <1 0 0> <1 0 1> 0.013 318.8
NaCl (mp-22862) <1 1 1> <1 1 0> 0.015 223.9
WSe2 (mp-1821) <1 0 0> <0 0 1> 0.017 250.9
GdScO3 (mp-5690) <1 1 1> <1 1 0> 0.018 287.9
CdWO4 (mp-19387) <0 1 0> <1 0 0> 0.018 158.3
DyScO3 (mp-31120) <1 0 0> <1 1 0> 0.020 319.8
YVO4 (mp-19133) <1 1 1> <1 0 0> 0.020 248.8
Ag (mp-124) <1 0 0> <0 0 1> 0.028 69.7
YAlO3 (mp-3792) <1 1 0> <0 0 1> 0.029 55.7
Ni (mp-23) <1 0 0> <0 0 1> 0.031 111.5
CdTe (mp-406) <1 0 0> <1 1 1> 0.032 174.4
TbScO3 (mp-31119) <1 0 0> <1 1 0> 0.043 319.8
InSb (mp-20012) <1 0 0> <1 1 1> 0.043 174.4
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.044 125.4
Mg (mp-153) <1 0 0> <0 0 1> 0.047 83.6
ZnO (mp-2133) <1 1 0> <1 1 1> 0.057 209.3
TePb (mp-19717) <1 0 0> <1 1 1> 0.060 174.4
SiO2 (mp-6930) <1 0 0> <1 0 0> 0.062 248.8
KTaO3 (mp-3614) <1 1 0> <1 1 0> 0.068 159.9
C (mp-48) <0 0 1> <0 0 1> 0.076 111.5
ZrO2 (mp-2858) <1 0 1> <1 1 0> 0.077 127.9
C (mp-48) <1 0 1> <1 0 0> 0.081 180.9
MgO (mp-1265) <1 1 0> <1 1 0> 0.084 127.9
DyScO3 (mp-31120) <1 1 0> <0 0 1> 0.088 125.4
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.092 125.4
TbScO3 (mp-31119) <1 1 1> <1 1 0> 0.093 287.9
LiGaO2 (mp-5854) <1 1 0> <0 0 1> 0.094 334.5
Te2Mo (mp-602) <0 0 1> <1 0 1> 0.095 132.8
Al (mp-134) <1 1 0> <1 1 0> 0.098 159.9
ZrO2 (mp-2858) <0 0 1> <0 0 1> 0.099 27.9
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.100 111.5
GdScO3 (mp-5690) <0 1 0> <1 1 0> 0.101 223.9
LiAlO2 (mp-3427) <1 0 0> <0 0 1> 0.106 167.2
LiNbO3 (mp-3731) <1 0 0> <0 0 1> 0.116 223.0
CdWO4 (mp-19387) <0 1 1> <1 1 0> 0.118 287.9
ZnO (mp-2133) <1 0 1> <1 0 0> 0.118 180.9
BN (mp-984) <1 0 1> <1 0 0> 0.132 180.9
Fe3O4 (mp-19306) <1 1 1> <1 1 0> 0.133 127.9
LaF3 (mp-905) <1 1 0> <0 0 1> 0.142 278.7
BN (mp-984) <1 1 1> <1 0 1> 0.150 239.1
TbScO3 (mp-31119) <1 1 0> <0 0 1> 0.152 125.4
Cu (mp-30) <1 1 1> <0 0 1> 0.155 250.9
KCl (mp-23193) <1 1 1> <1 1 0> 0.156 287.9
CdWO4 (mp-19387) <1 0 1> <1 0 0> 0.158 45.2
BaTiO3 (mp-5986) <1 0 1> <1 1 0> 0.160 159.9
CsI (mp-614603) <1 0 0> <0 0 1> 0.161 125.4
DyScO3 (mp-31120) <1 1 1> <1 1 0> 0.168 287.9
InP (mp-20351) <1 1 0> <1 0 0> 0.180 203.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
168 46 16 0 0 0
46 168 16 0 0 0
16 16 99 0 0 0
0 0 0 19 0 0
0 0 0 0 19 0
0 0 0 0 0 61
Compliance Tensor Sij (10-12Pa-1)
6.5 -1.7 -0.7 0 0 0
-1.7 6.5 -0.7 0 0 0
-0.7 -0.7 10.3 0 0 0
0 0 0 53.4 0 0
0 0 0 0 53.4 0
0 0 0 0 0 16.4
Shear Modulus GV
44 GPa
Bulk Modulus KV
66 GPa
Shear Modulus GR
32 GPa
Bulk Modulus KR
59 GPa
Shear Modulus GVRH
38 GPa
Bulk Modulus KVRH
62 GPa
Elastic Anisotropy
2.01
Poisson's Ratio
0.25

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
172
U Values
--
Pseudopotentials
VASP PAW: Ge_d As
Final Energy/Atom
-4.5872 eV
Corrected Energy
-9.1743 eV
-9.1743 eV = -9.1743 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 17033

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)