material

Cu2O3

ID:

mp-760432

DOI:

10.17188/1291638


Material Details

Final Magnetic Moment
-0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
-0.835 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.001 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.56 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Cu2O3
Band Gap
0.124 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Fdd2 [43]
Hall
F 2 2d
Point Group
mm2
Crystal System
orthorhombic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
InP (mp-20351) <1 1 0> <0 1 0> 0.000 301.1
Cu (mp-30) <1 1 0> <0 1 1> 0.003 55.5
LaF3 (mp-905) <1 0 1> <0 0 1> 0.007 70.2
Au (mp-81) <1 1 0> <0 1 1> 0.009 222.1
CdS (mp-672) <1 0 0> <0 0 1> 0.009 315.9
TiO2 (mp-390) <1 1 0> <0 0 1> 0.009 105.3
Mg (mp-153) <1 0 1> <0 1 0> 0.010 301.1
TbScO3 (mp-31119) <1 0 1> <0 0 1> 0.013 280.8
Te2W (mp-22693) <1 1 0> <0 1 1> 0.014 111.0
GaTe (mp-542812) <1 0 0> <0 0 1> 0.015 315.9
SiC (mp-11714) <0 0 1> <0 1 1> 0.018 166.6
SiC (mp-7631) <0 0 1> <0 1 1> 0.018 166.6
Ga2O3 (mp-886) <1 0 1> <1 0 0> 0.028 231.9
InP (mp-20351) <1 0 0> <0 1 0> 0.028 215.1
PbS (mp-21276) <1 0 0> <0 1 0> 0.030 215.1
CdS (mp-672) <1 1 1> <0 1 0> 0.030 258.1
BaTiO3 (mp-5986) <1 1 1> <1 1 1> 0.031 257.1
Ag (mp-124) <1 1 0> <0 1 1> 0.035 222.1
Bi2Te3 (mp-34202) <0 0 1> <0 1 1> 0.037 277.6
Fe2O3 (mp-24972) <0 0 1> <0 1 1> 0.038 277.6
DyScO3 (mp-31120) <1 0 1> <0 0 1> 0.039 280.8
TiO2 (mp-2657) <1 0 1> <0 0 1> 0.039 280.8
Cu (mp-30) <1 0 0> <0 0 1> 0.047 105.3
C (mp-48) <1 0 1> <0 1 0> 0.055 258.1
BaF2 (mp-1029) <1 1 1> <0 1 1> 0.057 277.6
YVO4 (mp-19133) <1 0 1> <0 0 1> 0.062 70.2
TiO2 (mp-390) <0 0 1> <0 0 1> 0.062 315.9
CdWO4 (mp-19387) <1 0 0> <1 1 0> 0.067 123.7
CdS (mp-672) <1 1 0> <0 1 0> 0.067 344.1
Te2Mo (mp-602) <1 0 0> <0 1 1> 0.073 55.5
CeO2 (mp-20194) <1 1 0> <0 1 1> 0.074 166.6
GaN (mp-804) <1 0 1> <1 0 0> 0.075 116.0
ZnO (mp-2133) <0 0 1> <0 0 1> 0.077 315.9
MgO (mp-1265) <1 0 0> <0 1 0> 0.078 215.1
NdGaO3 (mp-3196) <0 1 1> <0 0 1> 0.078 105.3
Si (mp-149) <1 1 0> <0 1 1> 0.079 166.6
ZrO2 (mp-2858) <1 1 0> <0 0 1> 0.079 315.9
SiC (mp-7631) <1 0 0> <1 0 0> 0.082 231.9
BaTiO3 (mp-5986) <1 0 1> <0 1 0> 0.088 258.1
TbScO3 (mp-31119) <0 0 1> <0 0 1> 0.088 315.9
Ga2O3 (mp-886) <1 0 0> <0 1 0> 0.088 215.1
KTaO3 (mp-3614) <1 0 0> <0 0 1> 0.092 280.8
YVO4 (mp-19133) <0 0 1> <0 1 0> 0.093 258.1
PbS (mp-21276) <1 1 0> <0 1 0> 0.094 301.1
AlN (mp-661) <0 0 1> <0 0 1> 0.097 315.9
MgF2 (mp-1249) <1 1 0> <0 1 1> 0.099 222.1
MgF2 (mp-1249) <1 0 0> <0 1 1> 0.103 222.1
MgO (mp-1265) <1 1 1> <1 1 0> 0.110 123.7
Te2Mo (mp-602) <0 0 1> <0 0 1> 0.111 175.5
C (mp-48) <1 0 0> <0 1 0> 0.116 172.1
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
219 67 62 0 0 0
67 220 96 0 0 0
62 96 81 0 0 0
0 0 0 70 0 0
0 0 0 0 31 0
0 0 0 0 0 73
Compliance Tensor Sij (10-12Pa-1)
5.8 0.4 -4.9 0 0 0
0.4 9.5 -11.5 0 0 0
-4.9 -11.5 29.8 0 0 0
0 0 0 14.3 0 0
0 0 0 0 32.6 0
0 0 0 0 0 13.6
Shear Modulus GV
54 GPa
Bulk Modulus KV
108 GPa
Shear Modulus GR
35 GPa
Bulk Modulus KR
77 GPa
Shear Modulus GVRH
45 GPa
Bulk Modulus KVRH
93 GPa
Elastic Anisotropy
3.14
Poisson's Ratio
0.29

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 0.00000 0.26177 0.00000
0.00000 0.00000 0.00000 -0.00899 0.00000 0.00000
0.69355 0.51735 0.20150 0.00000 0.00000 0.00000
Piezoelectric Modulus ‖eijmax
0.41394 C/m2
Crystallographic Direction vmax
1.00000
0.00000
0.85714

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
48
U Values
--
Pseudopotentials
VASP PAW: Cu_pv O
Final Energy/Atom
-5.0140 eV
Corrected Energy
-54.3541 eV
-54.3541 eV = -50.1403 eV (uncorrected energy) - 4.2137 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
User remarks:
  • supplementary compounds from MIT matgen database

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)