material

CuNi3O4

ID:

mp-761415

DOI:

10.17188/1291910


Material Details

Final Magnetic Moment
5.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Ferri
Formation Energy / Atom
-0.846 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.094 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
6.65 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
NiO + CuO
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Cmmm [65]
Hall
-C 2 2
Point Group
mmm
Crystal System
orthorhombic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
GdScO3 (mp-5690) <1 1 0> <0 1 0> 0.003 321.1
CdS (mp-672) <1 0 1> <0 1 0> 0.015 196.3
LiGaO2 (mp-5854) <1 1 1> <1 1 0> 0.016 279.1
ZnSe (mp-1190) <1 1 0> <1 0 0> 0.019 279.0
SiC (mp-11714) <0 0 1> <0 1 0> 0.020 231.9
SiC (mp-7631) <0 0 1> <0 1 0> 0.021 231.9
InP (mp-20351) <1 0 0> <0 1 0> 0.022 35.7
MoSe2 (mp-1634) <0 0 1> <1 1 0> 0.022 124.0
WSe2 (mp-1821) <0 0 1> <1 1 0> 0.023 124.0
CdWO4 (mp-19387) <1 0 0> <0 1 0> 0.024 124.9
PbS (mp-21276) <1 1 0> <1 0 0> 0.029 50.7
TiO2 (mp-2657) <1 0 1> <1 0 1> 0.034 283.9
GaAs (mp-2534) <1 1 0> <1 0 0> 0.036 279.0
Al (mp-134) <1 1 1> <1 0 0> 0.037 253.6
LiGaO2 (mp-5854) <1 1 0> <0 1 0> 0.037 339.0
MgO (mp-1265) <1 1 1> <0 1 0> 0.038 124.9
Mg (mp-153) <1 1 0> <1 0 0> 0.038 202.9
GdScO3 (mp-5690) <1 0 0> <1 0 0> 0.039 279.0
KTaO3 (mp-3614) <1 1 1> <1 0 0> 0.044 253.6
BaTiO3 (mp-5986) <1 0 0> <1 0 1> 0.048 170.4
SiC (mp-8062) <1 1 1> <1 0 0> 0.052 329.7
MgO (mp-1265) <1 1 0> <0 0 1> 0.053 50.8
Ni (mp-23) <1 1 1> <1 0 0> 0.058 126.8
InP (mp-20351) <1 1 0> <1 0 0> 0.058 50.7
CdWO4 (mp-19387) <1 0 1> <0 1 0> 0.063 89.2
BaTiO3 (mp-5986) <0 0 1> <0 1 0> 0.068 142.7
PbS (mp-21276) <1 0 0> <0 1 0> 0.069 35.7
LiTaO3 (mp-3666) <0 0 1> <1 1 0> 0.074 93.0
TbScO3 (mp-31119) <1 1 0> <0 1 0> 0.078 321.1
Te2Mo (mp-602) <1 1 1> <1 0 1> 0.079 283.9
Ge (mp-32) <1 1 0> <1 0 0> 0.080 279.0
DyScO3 (mp-31120) <0 0 1> <1 0 0> 0.086 279.0
BN (mp-984) <1 0 0> <0 1 0> 0.086 214.1
TbScO3 (mp-31119) <1 0 0> <1 0 0> 0.088 279.0
TiO2 (mp-2657) <1 1 0> <1 1 0> 0.093 155.0
Bi2Se3 (mp-541837) <1 0 0> <0 0 1> 0.095 254.1
AlN (mp-661) <1 0 0> <0 1 0> 0.098 142.7
MgF2 (mp-1249) <0 0 1> <0 1 0> 0.098 89.2
C (mp-48) <1 1 0> <1 1 1> 0.099 297.6
NdGaO3 (mp-3196) <0 1 0> <0 1 0> 0.103 339.0
Ge(Bi3O5)4 (mp-23352) <1 1 0> <1 0 0> 0.103 152.2
NaCl (mp-22862) <1 1 0> <1 0 0> 0.107 279.0
GdScO3 (mp-5690) <1 1 1> <0 1 1> 0.108 215.4
WSe2 (mp-1821) <1 0 0> <1 1 1> 0.110 297.6
LaF3 (mp-905) <1 0 1> <1 1 0> 0.110 279.1
KP(HO2)2 (mp-23959) <0 1 0> <0 1 0> 0.111 231.9
GaN (mp-804) <1 1 0> <1 0 0> 0.122 202.9
InSb (mp-20012) <1 0 0> <0 1 0> 0.125 89.2
LiAlO2 (mp-3427) <1 0 1> <1 0 0> 0.128 304.3
KCl (mp-23193) <1 1 0> <1 0 0> 0.130 228.3
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
318 107 139 0 0 0
107 190 110 0 0 0
139 110 324 0 0 0
0 0 0 68 0 0
0 0 0 0 100 0
0 0 0 0 0 70
Compliance Tensor Sij (10-12Pa-1)
4.3 -1.7 -1.3 0 0 0
-1.7 7.2 -1.7 0 0 0
-1.3 -1.7 4.2 0 0 0
0 0 0 14.7 0 0
0 0 0 0 10 0
0 0 0 0 0 14.3
Shear Modulus GV
79 GPa
Bulk Modulus KV
171 GPa
Shear Modulus GR
76 GPa
Bulk Modulus KR
157 GPa
Shear Modulus GVRH
77 GPa
Bulk Modulus KVRH
164 GPa
Elastic Anisotropy
0.33
Poisson's Ratio
0.30

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
24
U Values
Ni: 6.2 eV
Pseudopotentials
VASP PAW: Cu_pv Ni_pv O
Final Energy/Atom
-4.8295 eV
Corrected Energy
-47.9370 eV
-47.9370 eV = -38.6358 eV (uncorrected energy) - 6.4920 eV (MP Advanced Correction) - 2.8092 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
User remarks:
  • supplementary compounds from MIT matgen database

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)