material

SrNiO3

ID:

mp-762506

DOI:

10.17188/1292684


Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
AFM
Formation Energy / Atom
-1.667 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.034 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.50 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
SrO2 + Sr(NiO2)4 + Sr18Ni13O42
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Pm3m [221]
Hall
-P 4 2 3
Point Group
m3m
Crystal System
cubic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Ge(Bi3O5)4 (mp-23352) <1 1 1> <1 1 1> 0.005 183.1
Ni (mp-23) <1 1 0> <1 1 0> 0.007 192.2
GaP (mp-2490) <1 1 0> <1 1 0> 0.008 42.7
LiAlO2 (mp-3427) <1 0 0> <1 1 0> 0.008 299.0
GaP (mp-2490) <1 0 0> <1 0 0> 0.008 30.2
TiO2 (mp-2657) <1 0 1> <1 1 0> 0.012 128.1
NdGaO3 (mp-3196) <0 1 0> <1 1 0> 0.017 42.7
LaF3 (mp-905) <0 0 1> <1 1 1> 0.019 183.1
Mg (mp-153) <1 0 0> <1 1 0> 0.019 149.5
MoS2 (mp-1434) <1 1 0> <1 1 0> 0.020 234.9
LiAlO2 (mp-3427) <0 0 1> <1 0 0> 0.021 135.9
WS2 (mp-224) <1 1 0> <1 1 0> 0.021 234.9
SiO2 (mp-6930) <1 1 0> <1 1 0> 0.022 192.2
MoS2 (mp-1434) <1 1 1> <1 1 0> 0.022 234.9
Mg (mp-153) <0 0 1> <1 1 1> 0.023 26.2
InP (mp-20351) <1 1 1> <1 1 1> 0.024 183.1
BN (mp-984) <0 0 1> <1 1 1> 0.024 104.6
TiO2 (mp-2657) <1 0 0> <1 0 0> 0.025 166.1
WS2 (mp-224) <1 1 1> <1 1 1> 0.025 78.5
ZrO2 (mp-2858) <1 1 -1> <1 1 0> 0.027 320.3
SiO2 (mp-6930) <1 0 0> <1 1 0> 0.027 192.2
CaF2 (mp-2741) <1 1 0> <1 1 0> 0.027 42.7
Te2W (mp-22693) <0 0 1> <1 0 0> 0.028 332.2
CaF2 (mp-2741) <1 0 0> <1 0 0> 0.029 30.2
YAlO3 (mp-3792) <0 1 0> <1 1 0> 0.030 234.9
WS2 (mp-224) <1 0 1> <1 1 0> 0.032 277.6
GdScO3 (mp-5690) <1 0 1> <1 0 0> 0.039 226.5
CaCO3 (mp-3953) <1 1 0> <1 0 0> 0.040 151.0
GdScO3 (mp-5690) <0 0 1> <1 1 0> 0.040 64.1
Si (mp-149) <1 1 0> <1 1 0> 0.045 42.7
Si (mp-149) <1 0 0> <1 0 0> 0.047 30.2
CeO2 (mp-20194) <1 1 0> <1 1 0> 0.049 42.7
ZrO2 (mp-2858) <0 1 1> <1 0 0> 0.051 317.1
CeO2 (mp-20194) <1 0 0> <1 0 0> 0.052 30.2
NdGaO3 (mp-3196) <0 1 1> <1 1 1> 0.055 52.3
MoSe2 (mp-1634) <1 0 0> <1 1 0> 0.057 256.2
MoS2 (mp-1434) <0 0 1> <1 1 1> 0.060 26.2
WS2 (mp-224) <0 0 1> <1 1 1> 0.060 26.2
TbScO3 (mp-31119) <1 1 1> <1 0 0> 0.062 286.9
YAlO3 (mp-3792) <0 1 1> <1 0 0> 0.072 286.9
YVO4 (mp-19133) <1 0 0> <1 1 1> 0.073 183.1
InAs (mp-20305) <1 0 0> <1 0 0> 0.076 75.5
SiC (mp-7631) <1 0 1> <1 0 0> 0.081 241.6
NdGaO3 (mp-3196) <1 1 0> <1 0 0> 0.090 60.4
ZnTe (mp-2176) <1 0 0> <1 0 0> 0.090 75.5
Te2W (mp-22693) <0 1 0> <1 0 0> 0.101 271.8
C (mp-48) <1 0 0> <1 1 0> 0.102 170.8
Bi2Te3 (mp-34202) <0 0 1> <1 1 0> 0.106 85.4
TbScO3 (mp-31119) <1 0 1> <1 0 0> 0.113 226.5
AlN (mp-661) <1 1 0> <1 1 0> 0.114 192.2
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
214 62 62 0 0 0
62 214 62 0 0 0
62 62 214 0 0 0
0 0 0 43 0 0
0 0 0 0 43 0
0 0 0 0 0 43
Compliance Tensor Sij (10-12Pa-1)
5.4 -1.2 -1.2 0 0 0
-1.2 5.4 -1.2 0 0 0
-1.2 -1.2 5.4 0 0 0
0 0 0 23.2 0 0
0 0 0 0 23.2 0
0 0 0 0 0 23.2
Shear Modulus GV
56 GPa
Bulk Modulus KV
113 GPa
Shear Modulus GR
52 GPa
Bulk Modulus KR
113 GPa
Shear Modulus GVRH
54 GPa
Bulk Modulus KVRH
113 GPa
Elastic Anisotropy
0.40
Poisson's Ratio
0.29

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
192
U Values
Ni: 6.2 eV
Pseudopotentials
VASP PAW: Sr_sv Ni_pv O
Final Energy/Atom
-5.2667 eV
Corrected Energy
-30.6042 eV
-30.6042 eV = -26.3334 eV (uncorrected energy) - 2.1640 eV (MP Advanced Correction) - 2.1069 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
User remarks:
  • supplementary compounds from MIT matgen database

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)