Final Magnetic Moment0.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingAFM |
Formation Energy / Atom-2.681 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.096 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density3.10 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToLiMnO2 + LiF |
Band Gap1.277 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinCm [8] |
HallC 2y |
Point Groupm |
Crystal Systemmonoclinic |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <1 0 -1> | 219.2 |
LaAlO3 (mp-2920) | <1 0 0> | <1 0 0> | 209.2 |
LaAlO3 (mp-2920) | <1 0 1> | <1 0 -1> | 219.2 |
LaAlO3 (mp-2920) | <1 1 1> | <0 0 1> | 260.3 |
AlN (mp-661) | <0 0 1> | <0 0 1> | 297.5 |
AlN (mp-661) | <1 0 0> | <1 1 0> | 158.7 |
AlN (mp-661) | <1 0 1> | <1 0 1> | 174.5 |
AlN (mp-661) | <1 1 0> | <0 1 1> | 295.7 |
AlN (mp-661) | <1 1 1> | <1 0 0> | 235.3 |
CeO2 (mp-20194) | <1 0 0> | <0 0 1> | 148.8 |
CeO2 (mp-20194) | <1 1 0> | <1 0 -1> | 219.2 |
GaAs (mp-2534) | <1 0 0> | <1 0 0> | 287.6 |
GaAs (mp-2534) | <1 1 0> | <1 0 0> | 287.6 |
BaF2 (mp-1029) | <1 1 0> | <0 1 0> | 275.9 |
TePb (mp-19717) | <1 0 0> | <1 0 0> | 130.7 |
TePb (mp-19717) | <1 1 0> | <1 0 0> | 183.0 |
TePb (mp-19717) | <1 1 1> | <1 0 -1> | 219.2 |
GaN (mp-804) | <0 0 1> | <1 0 0> | 183.0 |
GaN (mp-804) | <1 0 0> | <0 0 1> | 148.8 |
GaN (mp-804) | <1 0 1> | <1 0 0> | 78.4 |
GaN (mp-804) | <1 1 0> | <0 1 0> | 229.9 |
GaN (mp-804) | <1 1 1> | <1 1 -1> | 160.6 |
Te2Mo (mp-602) | <0 0 1> | <0 1 0> | 183.9 |
Te2Mo (mp-602) | <1 0 1> | <0 1 0> | 321.9 |
Te2Mo (mp-602) | <1 1 0> | <0 0 1> | 297.5 |
Te2Mo (mp-602) | <1 1 1> | <0 0 1> | 297.5 |
SiO2 (mp-6930) | <0 0 1> | <1 1 1> | 222.4 |
SiO2 (mp-6930) | <1 0 0> | <1 0 0> | 261.5 |
SiO2 (mp-6930) | <1 0 1> | <1 0 -1> | 246.6 |
SiO2 (mp-6930) | <1 1 1> | <1 1 1> | 222.4 |
Ag (mp-124) | <1 0 0> | <0 0 1> | 260.3 |
Ag (mp-124) | <1 1 0> | <1 0 0> | 235.3 |
Ag (mp-124) | <1 1 1> | <1 1 1> | 148.3 |
KCl (mp-23193) | <1 1 1> | <1 0 -1> | 219.2 |
Bi2Te3 (mp-34202) | <0 0 1> | <1 0 -1> | 219.2 |
DyScO3 (mp-31120) | <0 0 1> | <1 0 0> | 183.0 |
DyScO3 (mp-31120) | <0 1 0> | <1 0 0> | 209.2 |
DyScO3 (mp-31120) | <0 1 1> | <0 1 0> | 275.9 |
DyScO3 (mp-31120) | <1 0 0> | <0 0 1> | 223.1 |
DyScO3 (mp-31120) | <1 0 1> | <0 0 1> | 111.6 |
GaSe (mp-1943) | <0 0 1> | <1 0 0> | 287.6 |
GaSe (mp-1943) | <1 1 0> | <1 0 0> | 235.3 |
GaSe (mp-1943) | <1 1 1> | <1 0 0> | 235.3 |
DyScO3 (mp-31120) | <1 1 0> | <1 0 0> | 313.8 |
DyScO3 (mp-31120) | <1 1 1> | <1 1 -1> | 267.6 |
InAs (mp-20305) | <1 1 0> | <0 1 0> | 275.9 |
ZnSe (mp-1190) | <1 0 0> | <1 0 0> | 156.9 |
ZnSe (mp-1190) | <1 1 0> | <0 0 1> | 223.1 |
ZnSe (mp-1190) | <1 1 1> | <1 0 -1> | 54.8 |
BN (mp-984) | <0 0 1> | <0 1 0> | 92.0 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
Piezoelectric Tensor eij (C/m2) |
|||||
---|---|---|---|---|---|
0.08959 | 0.01174 | -0.00282 | 0.23746 | -0.15039 | 0.14771 |
0.23056 | -0.57516 | -0.32075 | 0.05055 | 0.26585 | -0.01934 |
0.05526 | -0.02639 | -0.27153 | -0.34462 | 0.08019 | 0.23760 |
Piezoelectric Modulus ‖eij‖max0.77527 C/m2 |
Crystallographic Direction vmax |
---|
0.00000 |
-1.00000 |
-3.00000 |
Dielectric Tensor εij∞ (electronic contribution) |
||
---|---|---|
4.34 | 0.07 | 0.68 |
0.07 | 3.03 | -0.18 |
0.68 | -0.18 | 2.93 |
Dielectric Tensor εij (total) |
||
---|---|---|
11.71 | -1.04 | -3.45 |
-1.04 | 16.04 | 2.50 |
-3.45 | 2.50 | 18.84 |
Polycrystalline dielectric constant
εpoly∞
3.44
|
Polycrystalline dielectric constant
εpoly
15.53
|
Refractive Index n1.85 |
Potentially ferroelectric?Unknown |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
LiMnO2 (mp-772021) | 0.3196 | 0.050 | 3 |
LiMnO2 (mp-705804) | 0.3306 | 0.016 | 3 |
LiMnO2 (mp-767340) | 0.2867 | 0.138 | 3 |
Li2CrO3 (mp-770192) | 0.3332 | 0.146 | 3 |
Li4WO5 (mp-566981) | 0.3356 | 0.000 | 3 |
Li2MnO2F (mp-767056) | 0.2363 | 0.314 | 4 |
Li2MnO2F (mp-767025) | 0.2516 | 0.090 | 4 |
Li2MnO2F (mp-767116) | 0.2575 | 0.092 | 4 |
Li2MnO2F (mp-853170) | 0.2311 | 0.093 | 4 |
Li2FeO2F (mp-849459) | 0.2175 | 0.065 | 4 |
Te2Au (mp-1662) | 0.5872 | 0.018 | 2 |
NaTe3 (mp-28478) | 0.4753 | 0.000 | 2 |
Te2Au (mp-571547) | 0.5984 | 0.010 | 2 |
BaO (mp-776658) | 0.5373 | 0.019 | 2 |
Te2Au (mp-567525) | 0.5059 | 0.018 | 2 |
Na6MnNi3(SbO6)2 (mp-1094109) | 0.5954 | 0.139 | 5 |
Sb (mp-632286) | 0.7054 | 0.059 | 1 |
Bi (mp-567379) | 0.7330 | 0.059 | 1 |
Bi (mp-23152) | 0.7474 | 0.000 | 1 |
Te (mp-570459) | 0.5953 | 0.044 | 1 |
Run TypeGGA+U |
Energy Cutoff520 eV |
# of K-pointsNone |
U ValuesMn: 3.9 eV |
PseudopotentialsVASP PAW: Li_sv Mn_pv O F |
Final Energy/Atom-5.4678 eV |
Corrected Energy-236.4258 eV
Uncorrected energy = -218.7138 eV
Composition-based energy adjustment (-0.687 eV/atom x 8.0 atoms) = -5.4960 eV
Composition-based energy adjustment (-0.462 eV/atom x 12.0 atoms) = -5.5440 eV
Composition-based energy adjustment (-1.668 eV/atom x 4.0 atoms) = -6.6720 eV
Corrected energy = -236.4258 eV
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)