Final Magnetic Moment4.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingFM |
Formation Energy / Atom-2.631 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.085 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density3.60 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToMnO2 + MnF2 + LiF |
Band Gap0.746 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinCc [9] |
HallC 2yc |
Point Groupm |
Crystal Systemmonoclinic |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <1 0 0> | 153.5 |
LaAlO3 (mp-2920) | <1 0 1> | <1 0 0> | 153.5 |
AlN (mp-661) | <0 0 1> | <1 0 0> | 153.5 |
AlN (mp-661) | <1 0 1> | <1 0 0> | 122.8 |
AlN (mp-661) | <1 1 0> | <1 0 1> | 138.0 |
LaAlO3 (mp-2920) | <1 0 0> | <1 0 1> | 69.0 |
AlN (mp-661) | <1 0 0> | <1 1 -1> | 110.2 |
AlN (mp-661) | <1 1 1> | <1 0 -1> | 112.8 |
CeO2 (mp-20194) | <1 0 0> | <1 0 -1> | 150.5 |
GaAs (mp-2534) | <1 0 0> | <1 0 0> | 337.6 |
CeO2 (mp-20194) | <1 1 0> | <1 0 0> | 122.8 |
GaAs (mp-2534) | <1 1 0> | <1 0 0> | 92.1 |
GaAs (mp-2534) | <1 1 1> | <0 1 0> | 281.8 |
BaF2 (mp-1029) | <1 0 0> | <0 0 1> | 231.7 |
BaF2 (mp-1029) | <1 1 0> | <0 0 1> | 278.0 |
GaN (mp-804) | <0 0 1> | <0 1 0> | 80.5 |
GaN (mp-804) | <1 0 0> | <1 0 0> | 122.8 |
GaN (mp-804) | <1 0 1> | <0 1 1> | 245.5 |
SiO2 (mp-6930) | <0 0 1> | <0 1 0> | 281.8 |
SiO2 (mp-6930) | <1 0 0> | <1 0 0> | 368.3 |
SiO2 (mp-6930) | <1 0 1> | <0 1 0> | 241.6 |
GaN (mp-804) | <1 1 0> | <1 0 -1> | 150.5 |
GaN (mp-804) | <1 1 1> | <1 1 -1> | 220.4 |
SiO2 (mp-6930) | <1 1 1> | <1 0 -1> | 263.3 |
DyScO3 (mp-31120) | <0 0 1> | <1 0 0> | 30.7 |
DyScO3 (mp-31120) | <0 1 0> | <1 0 0> | 214.9 |
DyScO3 (mp-31120) | <0 1 1> | <1 0 0> | 153.5 |
DyScO3 (mp-31120) | <1 0 0> | <1 0 0> | 92.1 |
DyScO3 (mp-31120) | <1 0 1> | <1 0 0> | 276.3 |
DyScO3 (mp-31120) | <1 1 0> | <1 1 1> | 319.6 |
InAs (mp-20305) | <1 0 0> | <0 0 1> | 231.7 |
InAs (mp-20305) | <1 1 0> | <0 0 1> | 324.4 |
ZnSe (mp-1190) | <1 0 0> | <1 0 0> | 337.6 |
ZnSe (mp-1190) | <1 1 0> | <1 0 0> | 92.1 |
ZnSe (mp-1190) | <1 1 1> | <0 1 0> | 281.8 |
KTaO3 (mp-3614) | <1 1 0> | <1 0 0> | 92.1 |
KTaO3 (mp-3614) | <1 0 0> | <1 0 -1> | 188.1 |
KTaO3 (mp-3614) | <1 1 1> | <0 1 0> | 201.3 |
CdS (mp-672) | <0 0 1> | <0 1 0> | 281.8 |
CdS (mp-672) | <1 0 1> | <1 1 -1> | 165.3 |
CdS (mp-672) | <1 1 0> | <1 0 -1> | 150.5 |
CdS (mp-672) | <1 1 1> | <1 0 -1> | 150.5 |
CdS (mp-672) | <1 0 0> | <1 0 -1> | 150.5 |
LiF (mp-1138) | <1 0 0> | <1 0 0> | 214.9 |
LiF (mp-1138) | <1 1 1> | <0 1 0> | 201.3 |
LiF (mp-1138) | <1 1 0> | <1 0 0> | 92.1 |
YVO4 (mp-19133) | <1 1 0> | <1 1 1> | 319.6 |
Te2W (mp-22693) | <0 0 1> | <1 1 -1> | 110.2 |
Te2W (mp-22693) | <1 0 1> | <1 0 1> | 207.1 |
YVO4 (mp-19133) | <0 0 1> | <1 0 -1> | 150.5 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
Piezoelectric Tensor eij (C/m2) |
|||||
---|---|---|---|---|---|
0.26777 | 0.16587 | -0.03083 | 0.00000 | -0.10363 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.25581 | 0.00000 | 0.02092 |
0.39140 | 0.18327 | 0.07472 | 0.00000 | -0.11669 | 0.00000 |
Piezoelectric Modulus ‖eij‖max0.55770 C/m2 |
Crystallographic Direction vmax |
---|
-1.00000 |
-0.00000 |
1.00000 |
Dielectric Tensor εij∞ (electronic contribution) |
||
---|---|---|
7.61 | 0.00 | 0.60 |
0.00 | 3.20 | 0.00 |
0.60 | 0.00 | 3.16 |
Dielectric Tensor εij (total) |
||
---|---|---|
14.58 | 0.00 | 1.49 |
0.00 | 7.73 | 0.00 |
1.49 | 0.00 | 11.88 |
Polycrystalline dielectric constant
εpoly∞
4.66
|
Polycrystalline dielectric constant
εpoly
11.40
|
Refractive Index n2.16 |
Potentially ferroelectric?Unknown |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
LiAgF3 (mp-757915) | 0.4165 | 0.074 | 3 |
LiMn2F5 (mp-777710) | 0.4894 | 1.837 | 3 |
MnAlO3 (mp-774250) | 0.4544 | 0.046 | 3 |
Li3VF5 (mp-776691) | 0.4931 | 0.080 | 3 |
Li5BiO4 (mp-769040) | 0.4451 | 0.038 | 3 |
LiMn3(O2F)2 (mp-767123) | 0.3785 | 0.093 | 4 |
LiV3O5F (mp-765532) | 0.4427 | 0.071 | 4 |
Li2V2OF5 (mp-765272) | 0.4107 | 0.074 | 4 |
LiCoOF2 (mp-850916) | 0.4429 | 0.301 | 4 |
Li2VOF3 (mp-850895) | 0.4469 | 0.067 | 4 |
Pb3O4 (mp-636813) | 0.5633 | 0.038 | 2 |
Sr4N3 (mp-685023) | 0.5762 | 0.191 | 2 |
Cr3N2 (mp-1014444) | 0.5860 | 0.155 | 2 |
Ti3O5 (mp-556480) | 0.6101 | 0.009 | 2 |
Mn5O8 (mp-18922) | 0.6222 | 0.009 | 2 |
Li4MnV(WO6)2 (mp-761440) | 0.5092 | 0.049 | 5 |
Li4NbTe2WO12 (mp-763988) | 0.5001 | 0.075 | 5 |
Li4MnNb(WO6)2 (mp-771868) | 0.4952 | 0.027 | 5 |
NaLiV(OF)2 (mp-764851) | 0.5294 | 0.078 | 5 |
Li4VFe(TeO6)2 (mp-761819) | 0.4976 | 0.060 | 5 |
Run TypeGGA+U |
Energy Cutoff520 eV |
# of K-pointsNone |
U ValuesMn: 3.9 eV |
PseudopotentialsVASP PAW: Li_sv Mn_pv O F |
Final Energy/Atom-5.9261 eV |
Corrected Energy-65.8188 eV
Uncorrected energy = -59.2608 eV
Composition-based energy adjustment (-0.687 eV/atom x 2.0 atoms) = -1.3740 eV
Composition-based energy adjustment (-0.462 eV/atom x 4.0 atoms) = -1.8480 eV
Composition-based energy adjustment (-1.668 eV/atom x 2.0 atoms) = -3.3360 eV
Corrected energy = -65.8188 eV
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)