Final Magnetic Moment0.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingAFM |
Formation Energy / Atom-2.589 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.041 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density3.12 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToLi3Mn3(PO4)4 + Li3PO4 |
Band Gap0.563 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinC2/m [12] |
Hall-C 2y |
Point Group2/m |
Crystal Systemmonoclinic |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <1 0 0> | 97.0 |
LaAlO3 (mp-2920) | <1 0 1> | <1 0 0> | 291.1 |
LaAlO3 (mp-2920) | <1 0 0> | <0 0 1> | 142.0 |
AlN (mp-661) | <1 0 0> | <1 1 -1> | 78.2 |
AlN (mp-661) | <0 0 1> | <0 1 1> | 144.6 |
AlN (mp-661) | <1 0 1> | <1 0 1> | 176.2 |
AlN (mp-661) | <1 1 0> | <1 0 0> | 129.4 |
AlN (mp-661) | <1 1 1> | <1 0 -1> | 55.9 |
CeO2 (mp-20194) | <1 0 0> | <1 1 1> | 240.7 |
CeO2 (mp-20194) | <1 1 0> | <1 0 1> | 176.2 |
GaAs (mp-2534) | <1 1 0> | <1 0 0> | 226.4 |
GaAs (mp-2534) | <1 1 1> | <1 0 0> | 226.4 |
BaF2 (mp-1029) | <1 0 0> | <1 0 0> | 194.1 |
BaF2 (mp-1029) | <1 1 0> | <1 0 0> | 161.7 |
GaN (mp-804) | <1 0 0> | <1 0 1> | 117.5 |
GaN (mp-804) | <1 0 1> | <1 0 0> | 129.4 |
GaN (mp-804) | <1 1 0> | <1 0 1> | 58.7 |
GaN (mp-804) | <1 1 1> | <1 1 1> | 240.7 |
SiO2 (mp-6930) | <1 0 1> | <1 0 0> | 258.8 |
SiO2 (mp-6930) | <0 0 1> | <0 0 1> | 284.0 |
SiO2 (mp-6930) | <1 0 0> | <0 1 1> | 216.9 |
SiO2 (mp-6930) | <1 1 0> | <1 0 1> | 293.7 |
SiO2 (mp-6930) | <1 1 1> | <1 0 0> | 258.8 |
KCl (mp-23193) | <1 0 0> | <0 0 1> | 236.7 |
KCl (mp-23193) | <1 1 0> | <0 0 1> | 284.0 |
KCl (mp-23193) | <1 1 1> | <0 0 1> | 142.0 |
DyScO3 (mp-31120) | <1 0 0> | <1 0 0> | 226.4 |
DyScO3 (mp-31120) | <1 1 1> | <1 0 0> | 291.1 |
InAs (mp-20305) | <1 0 0> | <1 0 0> | 194.1 |
InAs (mp-20305) | <1 1 0> | <1 0 0> | 161.7 |
DyScO3 (mp-31120) | <0 1 0> | <1 0 1> | 176.2 |
KTaO3 (mp-3614) | <1 0 0> | <0 1 0> | 273.2 |
KTaO3 (mp-3614) | <1 1 0> | <1 0 0> | 226.4 |
CdS (mp-672) | <0 0 1> | <1 0 1> | 234.9 |
CdS (mp-672) | <1 0 0> | <1 0 0> | 258.8 |
CdS (mp-672) | <1 0 1> | <0 1 1> | 289.2 |
ZnSe (mp-1190) | <1 1 0> | <1 0 0> | 226.4 |
ZnSe (mp-1190) | <1 1 1> | <1 0 0> | 226.4 |
LiF (mp-1138) | <1 0 0> | <0 0 1> | 331.4 |
Te2W (mp-22693) | <0 0 1> | <0 1 1> | 289.2 |
Te2W (mp-22693) | <0 1 0> | <0 0 1> | 284.0 |
CdS (mp-672) | <1 1 1> | <1 1 1> | 160.4 |
LiF (mp-1138) | <1 1 1> | <0 1 0> | 327.9 |
YVO4 (mp-19133) | <1 0 1> | <0 1 0> | 218.6 |
YVO4 (mp-19133) | <1 1 0> | <1 1 -1> | 312.7 |
TePb (mp-19717) | <1 1 1> | <1 0 0> | 291.1 |
YVO4 (mp-19133) | <1 0 0> | <1 0 -1> | 279.5 |
TePb (mp-19717) | <1 0 0> | <1 0 -1> | 223.6 |
Te2Mo (mp-602) | <0 0 1> | <1 0 0> | 291.1 |
Te2Mo (mp-602) | <1 0 1> | <0 0 1> | 284.0 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
Dielectric Tensor εij∞ (electronic contribution) |
||
---|---|---|
3.63 | 0.00 | 0.87 |
0.00 | 5.85 | 0.00 |
0.87 | 0.00 | 4.33 |
Dielectric Tensor εij (total) |
||
---|---|---|
8.99 | 0.00 | 0.47 |
0.00 | 37.22 | 0.00 |
0.47 | 0.00 | 7.44 |
Polycrystalline dielectric constant
εpoly∞
4.61
|
Polycrystalline dielectric constant
εpoly
17.88
|
Refractive Index n2.15 |
Potentially ferroelectric?Unknown |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
YWN3 (mp-989615) | 0.5543 | 0.000 | 3 |
CaReN3 (mp-989606) | 0.5453 | 0.000 | 3 |
Li3V5O12 (mp-777675) | 0.5439 | 0.101 | 3 |
MgSiO3 (mp-5026) | 0.5651 | 0.007 | 3 |
LiVO3 (mp-19373) | 0.5177 | 0.020 | 3 |
LiAl(SiO3)2 (mp-6340) | 0.5032 | 0.034 | 4 |
Li4V2(SiO4)3 (mp-770256) | 0.4914 | 0.086 | 4 |
VCdCuO4 (mp-505424) | 0.4830 | 0.039 | 4 |
Li3Cr(PO4)2 (mp-774182) | 0.5082 | 0.058 | 4 |
Li2V(PO4)2 (mp-540254) | 0.5039 | 0.067 | 4 |
NaLi7Fe8(SiO3)16 (mp-775490) | 0.5374 | 0.011 | 5 |
Li4V2Si(PO6)2 (mp-770503) | 0.5002 | 0.109 | 5 |
Li4V2Si(PO6)2 (mp-770404) | 0.5302 | 0.077 | 5 |
Li4V2Si(PO6)2 (mp-770190) | 0.4983 | 0.258 | 5 |
Li4V2Si(PO6)2 (mp-778895) | 0.4936 | 0.123 | 5 |
Li4CrCo2Ni3(PO4)6 (mp-776777) | 0.5800 | 0.085 | 6 |
Li4Mn3CrCo2(PO4)6 (mp-763479) | 0.5436 | 0.080 | 6 |
Li4Mn2Fe3P6WO24 (mp-770860) | 0.5632 | 0.174 | 6 |
Li4Mn3NbCr2(PO4)6 (mp-776566) | 0.5740 | 0.102 | 6 |
Li4CrFe2Ni3(PO4)6 (mp-776753) | 0.5556 | 0.778 | 6 |
Run TypeGGA+U |
Energy Cutoff520 eV |
# of K-pointsNone |
U ValuesMn: 3.9 eV |
PseudopotentialsVASP PAW: Li_sv Mn_pv P O |
Final Energy/Atom-6.7323 eV |
Corrected Energy-405.6622 eV
Uncorrected energy = -377.0062 eV
Composition-based energy adjustment (-0.687 eV/atom x 32.0 atoms) = -21.9840 eV
Composition-based energy adjustment (-1.668 eV/atom x 4.0 atoms) = -6.6720 eV
Corrected energy = -405.6622 eV
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)