material

V3CoO8

ID:

mp-766784

DOI:

10.17188/1297106


Material Details

Final Magnetic Moment
4.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
FM
Formation Energy / Atom
-2.195 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.037 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
2.46 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
V2CoO6 + VO2
Band Gap
1.121 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P1 [1]
Hall
P 1
Point Group
1
Crystal System
triclinic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Ag (mp-124) <1 0 0> <0 0 1> 0.001 156.2
Au (mp-81) <1 0 0> <0 0 1> 0.001 156.2
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.001 62.5
MoSe2 (mp-1634) <1 0 0> <0 1 0> 0.002 205.2
PbSe (mp-2201) <1 0 0> <0 0 1> 0.003 156.2
ZrO2 (mp-2858) <0 0 1> <0 0 1> 0.003 249.9
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.004 31.2
LiAlO2 (mp-3427) <1 1 0> <1 1 0> 0.004 232.2
SrTiO3 (mp-4651) <1 0 0> <1 1 1> 0.004 131.1
Au (mp-81) <1 1 0> <1 1 1> 0.004 196.7
Ag (mp-124) <1 1 0> <1 1 1> 0.005 196.7
Mg (mp-153) <1 0 0> <0 0 1> 0.005 249.9
GaSb (mp-1156) <1 0 0> <0 0 1> 0.006 156.2
CdWO4 (mp-19387) <1 1 1> <0 1 0> 0.006 205.2
InP (mp-20351) <1 0 0> <0 0 1> 0.006 281.1
Y3Fe5O12 (mp-19648) <1 0 0> <0 0 1> 0.007 156.2
CsI (mp-614603) <1 1 0> <1 1 0> 0.008 174.1
BaF2 (mp-1029) <1 0 0> <0 0 1> 0.008 156.2
CsI (mp-614603) <1 0 0> <0 0 1> 0.008 62.5
CdSe (mp-2691) <1 0 0> <0 0 1> 0.008 156.2
SiC (mp-11714) <0 0 1> <0 1 1> 0.008 308.0
MgO (mp-1265) <1 1 0> <1 1 0> 0.009 232.2
TeO2 (mp-2125) <0 1 0> <0 1 0> 0.010 205.2
GaN (mp-804) <1 1 0> <0 1 0> 0.010 205.2
LiTaO3 (mp-3666) <1 0 1> <1 1 0> 0.012 232.2
LiNbO3 (mp-3731) <1 0 1> <1 1 0> 0.012 232.2
TiO2 (mp-390) <0 0 1> <0 0 1> 0.013 249.9
LiAlO2 (mp-3427) <0 0 1> <0 0 1> 0.013 249.9
GaN (mp-804) <1 1 1> <0 1 0> 0.014 123.1
Ni (mp-23) <1 0 0> <0 0 1> 0.014 62.5
CaF2 (mp-2741) <1 1 0> <1 1 1> 0.014 131.1
DyScO3 (mp-31120) <1 1 0> <0 0 1> 0.015 62.5
TePb (mp-19717) <1 0 0> <0 1 1> 0.016 256.7
C (mp-48) <1 0 0> <1 1 0> 0.016 58.0
CdS (mp-672) <0 0 1> <0 1 0> 0.017 123.1
LiAlO2 (mp-3427) <1 1 1> <0 1 0> 0.018 164.1
C (mp-48) <0 0 1> <0 1 1> 0.018 256.7
SiC (mp-8062) <1 0 0> <0 0 1> 0.019 156.2
TiO2 (mp-2657) <0 0 1> <0 1 1> 0.019 256.7
GaP (mp-2490) <1 1 0> <1 1 1> 0.020 131.1
Ga2O3 (mp-886) <1 0 -1> <0 0 1> 0.020 156.2
YAlO3 (mp-3792) <0 1 0> <1 1 0> 0.021 116.1
Bi2Se3 (mp-541837) <0 0 1> <0 1 0> 0.022 123.1
Cu (mp-30) <1 1 1> <0 1 0> 0.023 246.2
GdScO3 (mp-5690) <0 1 0> <1 1 1> 0.023 131.1
TbScO3 (mp-31119) <1 1 0> <0 0 1> 0.023 62.5
TeO2 (mp-2125) <1 1 0> <1 1 0> 0.023 290.2
CdWO4 (mp-19387) <1 0 1> <1 1 0> 0.023 174.1
TbScO3 (mp-31119) <0 1 0> <1 1 1> 0.025 131.1
YVO4 (mp-19133) <1 0 0> <1 1 0> 0.025 232.2
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
15 3 -0 0 2 -2
3 27 -3 -2 3 -1
-0 -3 20 -1 1 -0
0 -2 -1 7 0 0
2 3 1 0 14 0
-2 -1 -0 0 0 19
Compliance Tensor Sij (10-12Pa-1)
72.8 -7.2 -0.5 -1.9 -9.9 7.3
-7.2 40.3 6.9 10.8 -7.4 1.1
-0.5 6.9 51.9 12.5 -4.3 1.1
-1.9 10.8 12.5 145.7 -5.8 -0.5
-9.9 -7.4 -4.3 -5.8 75.3 -3.2
7.3 1.1 1.1 -0.5 -3.2 54.3
Shear Modulus GV
12 GPa
Bulk Modulus KV
7 GPa
Shear Modulus GR
10 GPa
Bulk Modulus KR
6 GPa
Shear Modulus GVRH
11 GPa
Bulk Modulus KVRH
6 GPa
Elastic Anisotropy
1.09
Poisson's Ratio
-0.04

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
72
U Values
Co: 3.32 eV
V: 3.25 eV
Pseudopotentials
VASP PAW: V_pv Co O
Final Energy/Atom
-7.3023 eV
Corrected Energy
-100.1659 eV
-100.1659 eV = -87.6276 eV (uncorrected energy) - 6.9200 eV (MP Advanced Correction) - 5.6183 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
User remarks:
  • supplementary compounds from MIT matgen database

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)