material

V2O3F

ID:

mp-774117

DOI:

10.17188/1302359


Material Details

Final Magnetic Moment
3.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Ferri
Formation Energy / Atom
-2.640 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.034 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.25 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
V2O3F
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Amm2 [38]
Hall
A 2 2
Point Group
mm2
Crystal System
orthorhombic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
Ga2O3 (mp-886) <1 0 -1> <0 1 0> 0.007 345.4
LaAlO3 (mp-2920) <1 1 1> <0 1 1> 0.007 253.0
LaAlO3 (mp-2920) <0 0 1> <0 1 1> 0.028 253.0
ZrO2 (mp-2858) <0 0 1> <0 1 0> 0.031 304.7
CdWO4 (mp-19387) <1 0 0> <0 0 1> 0.034 155.4
PbS (mp-21276) <1 0 0> <0 1 0> 0.036 325.0
C (mp-48) <1 0 1> <1 0 1> 0.040 241.2
MgO (mp-1265) <1 0 0> <0 1 0> 0.045 162.5
YAlO3 (mp-3792) <1 0 0> <1 0 1> 0.050 241.2
Te2Mo (mp-602) <1 0 0> <0 0 1> 0.056 272.0
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.057 310.8
TbScO3 (mp-31119) <0 1 1> <0 1 0> 0.060 162.5
SiO2 (mp-6930) <1 0 1> <1 1 1> 0.065 104.7
C (mp-66) <1 1 0> <1 1 0> 0.066 145.8
YAlO3 (mp-3792) <0 1 0> <1 0 1> 0.067 193.0
LiGaO2 (mp-5854) <0 0 1> <0 1 0> 0.068 304.7
MgO (mp-1265) <1 1 1> <0 0 1> 0.083 155.4
LiGaO2 (mp-5854) <1 1 0> <1 0 1> 0.088 48.2
Te2W (mp-22693) <0 1 0> <0 0 1> 0.093 272.0
AlN (mp-661) <1 0 1> <0 1 0> 0.095 142.2
CsI (mp-614603) <1 0 0> <0 0 1> 0.101 310.8
DyScO3 (mp-31120) <0 1 1> <0 1 0> 0.101 162.5
SiC (mp-8062) <1 1 1> <0 1 0> 0.105 264.1
Ni (mp-23) <1 1 1> <1 0 1> 0.105 193.0
GdScO3 (mp-5690) <1 1 1> <1 0 1> 0.121 144.7
GdScO3 (mp-5690) <0 1 1> <0 1 0> 0.131 162.5
ZrO2 (mp-2858) <1 1 1> <0 1 0> 0.131 101.6
Te2Mo (mp-602) <0 0 1> <1 1 1> 0.133 261.8
Ni (mp-23) <1 0 0> <0 0 1> 0.134 233.1
ZrO2 (mp-2858) <1 1 0> <1 0 1> 0.138 241.2
ZrO2 (mp-2858) <1 0 -1> <0 1 0> 0.146 142.2
LiAlO2 (mp-3427) <0 0 1> <0 1 0> 0.155 304.7
YAlO3 (mp-3792) <1 1 0> <1 0 1> 0.155 337.7
GdScO3 (mp-5690) <1 0 1> <1 0 1> 0.160 337.7
CdWO4 (mp-19387) <0 1 1> <0 1 1> 0.165 281.1
LiTaO3 (mp-3666) <0 0 1> <0 1 0> 0.171 162.5
InSb (mp-20012) <1 1 1> <0 1 1> 0.183 309.2
SiC (mp-8062) <1 0 0> <0 1 1> 0.184 253.0
GdScO3 (mp-5690) <1 0 0> <0 1 0> 0.185 325.0
CdWO4 (mp-19387) <1 0 1> <0 1 1> 0.192 224.9
BaTiO3 (mp-5986) <0 0 1> <0 1 0> 0.197 223.5
WS2 (mp-224) <1 0 0> <1 1 1> 0.198 314.1
Ga2O3 (mp-886) <1 0 1> <0 1 1> 0.201 140.5
Cu (mp-30) <1 1 0> <1 1 0> 0.202 145.8
TiO2 (mp-2657) <1 1 0> <0 0 1> 0.202 19.4
TiO2 (mp-2657) <1 0 0> <0 1 1> 0.202 28.1
CdTe (mp-406) <1 1 1> <0 1 1> 0.210 309.2
TbScO3 (mp-31119) <1 0 1> <1 0 1> 0.219 337.7
Au (mp-81) <1 0 0> <0 1 0> 0.223 121.9
YAlO3 (mp-3792) <1 0 1> <0 1 0> 0.229 243.8
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
450 42 150 0 0 0
42 282 112 0 0 0
150 112 324 0 0 0
0 0 0 78 0 0
0 0 0 0 83 0
0 0 0 0 0 44
Compliance Tensor Sij (10-12Pa-1)
2.6 0.1 -1.3 0 0 0
0.1 4.1 -1.5 0 0 0
-1.3 -1.5 4.2 0 0 0
0 0 0 12.8 0 0
0 0 0 0 12 0
0 0 0 0 0 22.6
Shear Modulus GV
91 GPa
Bulk Modulus KV
185 GPa
Shear Modulus GR
76 GPa
Bulk Modulus KR
176 GPa
Shear Modulus GVRH
84 GPa
Bulk Modulus KVRH
180 GPa
Elastic Anisotropy
1.02
Poisson's Ratio
0.30

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
48
U Values
V: 3.25 eV
Pseudopotentials
VASP PAW: V_pv O F
Final Energy/Atom
-7.4589 eV
Corrected Energy
-50.2243 eV
-50.2243 eV = -44.7534 eV (uncorrected energy) - 3.3640 eV (MP Advanced Correction) - 2.1069 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
User remarks:
  • supplementary compounds from MIT matgen database

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)