material

LiFeF4

ID:

mp-776791

DOI:

10.17188/1304454


Material Details

Final Magnetic Moment
10.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
FM
Formation Energy / Atom
-2.922 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.005 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
3.40 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Li3FeF6 + FeF3
Band Gap
3.790 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P2/c [13]
Hall
-P 2yc
Point Group
2/m
Crystal System
monoclinic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
ZnO (mp-2133) <1 1 0> <1 0 1> 0.001 120.6
AlN (mp-661) <1 0 1> <0 0 1> 0.003 53.6
SiC (mp-7631) <0 0 1> <0 1 0> 0.005 190.8
SiC (mp-11714) <0 0 1> <0 1 0> 0.005 190.8
GdScO3 (mp-5690) <1 1 0> <0 0 1> 0.006 321.4
Al (mp-134) <1 1 0> <1 0 0> 0.010 115.4
C (mp-66) <1 1 0> <1 0 0> 0.010 144.2
MoSe2 (mp-1634) <1 0 1> <1 1 0> 0.014 262.0
KTaO3 (mp-3614) <1 1 0> <1 0 0> 0.015 115.4
NaCl (mp-22862) <1 0 0> <0 0 1> 0.017 160.7
SiC (mp-7631) <1 0 0> <0 0 1> 0.017 187.5
LiAlO2 (mp-3427) <1 1 1> <1 1 1> 0.017 327.2
BaTiO3 (mp-5986) <1 1 0> <1 0 1> 0.021 120.6
BN (mp-984) <1 1 0> <1 0 0> 0.022 201.9
LiGaO2 (mp-5854) <0 1 1> <1 0 0> 0.022 86.5
LiTaO3 (mp-3666) <1 1 0> <0 1 1> 0.022 251.1
CdWO4 (mp-19387) <1 0 1> <0 0 1> 0.024 133.9
LiAlO2 (mp-3427) <1 0 0> <1 1 1> 0.027 233.7
GaTe (mp-542812) <1 0 -1> <1 0 0> 0.027 230.7
Te2Mo (mp-602) <1 1 0> <0 0 1> 0.034 187.5
TeO2 (mp-2125) <1 0 1> <1 0 0> 0.034 230.7
TbScO3 (mp-31119) <1 1 0> <0 0 1> 0.034 321.4
ZrO2 (mp-2858) <0 1 0> <0 1 0> 0.039 167.0
CaCO3 (mp-3953) <1 0 0> <1 0 0> 0.039 86.5
BN (mp-984) <1 1 1> <0 1 0> 0.040 238.5
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.040 133.9
TbScO3 (mp-31119) <0 0 1> <1 1 0> 0.041 187.1
TiO2 (mp-390) <0 0 1> <0 0 1> 0.046 214.2
BaF2 (mp-1029) <1 0 0> <1 1 1> 0.048 280.5
CdWO4 (mp-19387) <1 1 0> <0 1 0> 0.051 286.3
GaAs (mp-2534) <1 1 0> <0 0 1> 0.051 187.5
NdGaO3 (mp-3196) <1 0 1> <0 0 1> 0.052 53.6
MoSe2 (mp-1634) <0 0 1> <0 0 1> 0.053 133.9
ZnSe (mp-1190) <1 1 0> <0 0 1> 0.053 187.5
WSe2 (mp-1821) <0 0 1> <0 0 1> 0.053 133.9
MgF2 (mp-1249) <1 0 1> <0 0 1> 0.054 26.8
Ge (mp-32) <1 1 0> <0 0 1> 0.054 187.5
Ag (mp-124) <1 0 0> <0 1 0> 0.055 190.8
Te2W (mp-22693) <0 0 1> <0 1 0> 0.056 262.4
DyScO3 (mp-31120) <1 1 0> <0 0 1> 0.062 321.4
Au (mp-81) <1 0 0> <0 1 0> 0.064 190.8
BaTiO3 (mp-5986) <0 0 1> <0 1 1> 0.065 179.3
WSe2 (mp-1821) <1 1 0> <1 0 0> 0.065 86.5
TeO2 (mp-2125) <0 1 1> <1 0 0> 0.070 230.7
CdS (mp-672) <0 0 1> <0 1 0> 0.070 167.0
C (mp-48) <1 0 1> <0 0 1> 0.072 294.6
LiF (mp-1138) <1 1 1> <0 1 0> 0.072 262.4
TiO2 (mp-390) <1 0 0> <1 1 1> 0.082 187.0
TiO2 (mp-390) <1 1 1> <0 1 0> 0.082 214.7
Mg (mp-153) <0 0 1> <0 1 0> 0.082 238.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
118 33 35 0 -13 0
33 92 37 0 -12 0
35 37 80 0 -13 0
0 0 0 30 0 -8
-13 -12 -13 0 28 0
0 0 0 -8 0 33
Compliance Tensor Sij (10-12Pa-1)
10.2 -2.1 -3.1 0 2.3 0
-2.1 14.1 -5 0 3 0
-3.1 -5 16.8 0 4.4 0
0 0 0 34.9 0 8.1
2.3 3 4.4 0 40.8 0
0 0 0 8.1 0 32.1
Shear Modulus GV
31 GPa
Bulk Modulus KV
55 GPa
Shear Modulus GR
28 GPa
Bulk Modulus KR
48 GPa
Shear Modulus GVRH
29 GPa
Bulk Modulus KVRH
52 GPa
Elastic Anisotropy
0.54
Poisson's Ratio
0.26

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
24
U Values
Fe: 5.3 eV
Pseudopotentials
VASP PAW: Li_sv Fe_pv F
Final Energy/Atom
-5.1418 eV
Corrected Energy
-67.1671 eV
-67.1671 eV = -61.7011 eV (uncorrected energy) - 5.4660 eV (MP Advanced Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
User remarks:
  • supplementary compounds from MIT matgen database

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)