material

LiFeF4

ID:

mp-776827

DOI:

10.17188/1304485


Material Details

Final Magnetic Moment
10.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
FM
Formation Energy / Atom
-2.848 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.079 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
3.24 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Li3FeF6 + FeF3
Band Gap
3.366 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P2/c [13]
Hall
-P 2yc
Point Group
2/m
Crystal System
monoclinic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
GaSe (mp-1943) <1 1 0> <1 0 -1> 0.000 234.7
BaTiO3 (mp-5986) <1 1 1> <1 0 1> 0.001 86.2
LiAlO2 (mp-3427) <1 0 0> <0 0 1> 0.003 132.1
LaF3 (mp-905) <1 1 0> <1 1 0> 0.004 278.4
GaSe (mp-1943) <0 0 1> <1 0 -1> 0.004 100.6
PbS (mp-21276) <1 0 0> <1 0 1> 0.004 215.6
LiGaO2 (mp-5854) <0 1 1> <1 0 1> 0.007 43.1
TiO2 (mp-2657) <1 1 1> <1 0 -1> 0.009 234.7
GaSe (mp-1943) <1 1 1> <1 0 -1> 0.009 234.7
ZrO2 (mp-2858) <0 1 1> <0 1 0> 0.010 196.4
LiNbO3 (mp-3731) <1 0 1> <0 1 1> 0.011 77.1
YAlO3 (mp-3792) <1 0 1> <0 1 0> 0.011 196.4
CdS (mp-672) <1 0 0> <1 1 1> 0.015 257.2
WS2 (mp-224) <0 0 1> <1 1 0> 0.016 79.5
MoS2 (mp-1434) <0 0 1> <1 1 0> 0.016 79.5
WSe2 (mp-1821) <1 0 0> <1 0 -1> 0.017 100.6
BN (mp-984) <0 0 1> <0 0 1> 0.018 132.1
Au (mp-81) <1 1 0> <1 1 0> 0.019 198.8
YVO4 (mp-19133) <0 0 1> <1 0 1> 0.021 258.7
WS2 (mp-224) <1 1 1> <1 1 0> 0.022 79.5
TeO2 (mp-2125) <0 1 1> <1 0 0> 0.022 225.5
Mg (mp-153) <0 0 1> <1 1 0> 0.024 79.5
Ag (mp-124) <1 1 1> <0 0 1> 0.027 211.3
AlN (mp-661) <1 0 0> <0 0 1> 0.028 79.2
SiO2 (mp-6930) <1 0 1> <1 0 0> 0.028 140.9
MgO (mp-1265) <1 1 1> <0 0 1> 0.029 158.5
Mg (mp-153) <1 0 0> <0 0 1> 0.029 132.1
LiTaO3 (mp-3666) <1 0 1> <0 1 1> 0.030 77.1
SiC (mp-11714) <1 0 0> <0 0 1> 0.030 158.5
GdScO3 (mp-5690) <0 0 1> <1 1 0> 0.030 159.1
YAlO3 (mp-3792) <1 0 0> <0 1 0> 0.032 280.6
InP (mp-20351) <1 0 0> <1 0 1> 0.032 215.6
YVO4 (mp-19133) <1 0 1> <1 1 0> 0.033 278.4
CdWO4 (mp-19387) <1 0 1> <0 1 1> 0.036 308.3
Fe3O4 (mp-19306) <1 0 0> <1 0 1> 0.036 215.6
YAlO3 (mp-3792) <1 1 1> <1 0 0> 0.036 253.7
LiGaO2 (mp-5854) <1 1 1> <1 0 -1> 0.037 167.7
Fe2O3 (mp-24972) <1 0 0> <1 0 0> 0.038 140.9
CdS (mp-672) <1 1 1> <1 1 -1> 0.038 262.4
TeO2 (mp-2125) <0 0 1> <1 1 0> 0.039 159.1
WSe2 (mp-1821) <1 0 1> <0 1 0> 0.040 252.5
ZrO2 (mp-2858) <1 0 0> <1 1 0> 0.041 198.8
NdGaO3 (mp-3196) <1 0 1> <1 1 0> 0.042 159.1
Ag (mp-124) <1 1 0> <1 1 0> 0.042 198.8
LaF3 (mp-905) <1 0 1> <1 1 0> 0.044 278.4
MgO (mp-1265) <1 0 0> <0 1 0> 0.044 196.4
ZnO (mp-2133) <1 0 1> <0 1 0> 0.044 196.4
ZrO2 (mp-2858) <0 1 0> <0 1 1> 0.045 192.7
CaCO3 (mp-3953) <1 0 0> <1 0 1> 0.047 86.2
GaN (mp-804) <0 0 1> <1 1 0> 0.049 79.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
71 35 30 0 1 0
35 72 32 0 -2 0
30 32 71 0 2 0
0 0 0 16 0 -4
1 -2 2 0 15 0
0 0 0 -4 0 14
Compliance Tensor Sij (10-12Pa-1)
19.8 -7.4 -5.1 0 -1.7 0
-7.4 20.3 -6.1 0 3.8 0
-5.1 -6.1 19.1 0 -2.7 0
0 0 0 65.5 0 18
-1.7 3.8 -2.7 0 69.2 0
0 0 0 18 0 75.6
Shear Modulus GV
17 GPa
Bulk Modulus KV
45 GPa
Shear Modulus GR
16 GPa
Bulk Modulus KR
45 GPa
Shear Modulus GVRH
16 GPa
Bulk Modulus KVRH
45 GPa
Elastic Anisotropy
0.29
Poisson's Ratio
0.34

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
24
U Values
Fe: 5.3 eV
Pseudopotentials
VASP PAW: Li_sv Fe_pv F
Final Energy/Atom
-5.0682 eV
Corrected Energy
-66.2847 eV
-66.2847 eV = -60.8187 eV (uncorrected energy) - 5.4660 eV (MP Advanced Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
User remarks:
  • supplementary compounds from MIT matgen database

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)