material

AlAsO4

ID:

mp-7849

DOI:

10.17188/1307750

Warnings: [?]
  1. Volume change > 20.0%

Tags: Aluminium arsenate

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-2.459 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
2.70 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
4.248 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4 [82]
Hall
I 4
Point Group
4
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
CdSe (mp-2691) <1 0 0> <0 0 1> 0.000 347.5
MgAl2O4 (mp-3536) <1 0 0> <0 0 1> 0.000 133.7
GaSb (mp-1156) <1 0 0> <0 0 1> 0.000 347.5
LiF (mp-1138) <1 0 0> <0 0 1> 0.000 133.7
GaSe (mp-1943) <1 0 1> <1 0 0> 0.001 276.0
PbSe (mp-2201) <1 0 0> <0 0 1> 0.002 347.5
Ge (mp-32) <1 0 0> <0 0 1> 0.005 133.7
Mg (mp-153) <1 1 1> <0 0 1> 0.007 240.6
TePb (mp-19717) <1 0 0> <0 0 1> 0.008 213.8
Ge(Bi3O5)4 (mp-23352) <1 0 0> <0 0 1> 0.008 106.9
LiGaO2 (mp-5854) <1 0 1> <1 0 0> 0.009 315.5
SiC (mp-7631) <1 0 0> <1 0 0> 0.010 236.6
ZnTe (mp-2176) <1 0 0> <0 0 1> 0.011 347.5
Fe2O3 (mp-24972) <1 0 0> <1 0 1> 0.012 142.9
InAs (mp-20305) <1 0 0> <0 0 1> 0.013 347.5
GaAs (mp-2534) <1 0 0> <0 0 1> 0.014 133.7
ZnO (mp-2133) <1 0 1> <0 0 1> 0.014 294.0
TiO2 (mp-2657) <0 0 1> <0 0 1> 0.018 106.9
ZnTe (mp-2176) <1 1 1> <1 1 0> 0.019 334.6
KP(HO2)2 (mp-23959) <1 1 1> <1 0 0> 0.020 157.7
ZnSe (mp-1190) <1 0 0> <0 0 1> 0.022 133.7
CdS (mp-672) <0 0 1> <1 1 0> 0.022 278.8
InAs (mp-20305) <1 1 1> <1 1 0> 0.023 334.6
Fe2O3 (mp-24972) <1 0 1> <1 1 0> 0.025 223.1
LiAlO2 (mp-3427) <1 1 0> <1 1 0> 0.025 278.8
YVO4 (mp-19133) <1 0 0> <1 1 0> 0.025 278.8
Au (mp-81) <1 1 0> <1 1 0> 0.025 223.1
BN (mp-984) <1 1 0> <1 1 0> 0.027 167.3
MgO (mp-1265) <1 0 0> <1 0 0> 0.031 236.6
C (mp-66) <1 0 0> <0 0 1> 0.031 213.8
CdS (mp-672) <1 1 0> <1 1 1> 0.031 247.4
Te2W (mp-22693) <1 1 0> <1 1 0> 0.035 111.5
YAlO3 (mp-3792) <0 1 1> <1 0 1> 0.035 47.6
LaF3 (mp-905) <1 0 0> <0 0 1> 0.037 53.5
Te2Mo (mp-602) <1 0 1> <1 0 1> 0.039 333.5
Ag (mp-124) <1 1 0> <1 1 0> 0.040 223.1
Au (mp-81) <1 1 1> <0 0 1> 0.041 213.8
C (mp-48) <0 0 1> <1 1 1> 0.041 247.4
PbS (mp-21276) <1 1 0> <1 1 1> 0.041 309.2
LiTaO3 (mp-3666) <1 0 0> <1 0 1> 0.043 142.9
CeO2 (mp-20194) <1 1 0> <1 1 0> 0.045 167.3
C (mp-48) <1 0 1> <0 0 1> 0.046 294.0
CeO2 (mp-20194) <1 0 0> <1 0 0> 0.046 118.3
MgF2 (mp-1249) <1 1 0> <1 1 0> 0.047 223.1
MgO (mp-1265) <1 1 1> <1 0 0> 0.047 157.7
Si (mp-149) <1 1 0> <1 1 0> 0.047 167.3
Si (mp-149) <1 0 0> <1 0 0> 0.048 118.3
SiC (mp-7631) <1 0 1> <1 0 0> 0.050 236.6
MoS2 (mp-1434) <1 0 0> <1 0 0> 0.051 276.0
InP (mp-20351) <1 0 0> <0 0 1> 0.056 347.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
57 -10 19 -0 -0 -0
-10 57 19 0 0 0
19 19 51 0 -0 0
-0 0 0 19 0 -0
-0 0 -0 0 19 -0
-0 0 0 -0 -0 18
Compliance Tensor Sij (10-12Pa-1)
22.5 7.7 -11.3 0 0 0.3
7.7 22.5 -11.3 0 0 -0.3
-11.3 -11.3 28 0 0 0
0 0 0 53.2 0 0
0 0 0 0 53.2 0
0.3 -0.3 0 0 0 56.3
Shear Modulus GV
20 GPa
Bulk Modulus KV
25 GPa
Shear Modulus GR
18 GPa
Bulk Modulus KR
23 GPa
Shear Modulus GVRH
19 GPa
Bulk Modulus KVRH
24 GPa
Elastic Anisotropy
0.74
Poisson's Ratio
0.18

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 0.03780 -0.08615 0.00000
0.00000 0.00000 0.00000 0.08615 0.03780 0.00000
-0.15207 0.15207 0.00000 0.00000 0.00000 0.22270
Piezoelectric Modulus ‖eijmax
0.10812 C/m2
Crystallographic Direction vmax
1.00000
-0.28571
0.71429

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
2.41 -0.01 -0.01
-0.01 2.42 0.01
-0.01 0.01 2.43
Dielectric Tensor εij (total)
4.20 -0.14 -0.16
-0.14 4.30 0.23
-0.16 0.23 4.37
Polycrystalline dielectric constant εpoly
(electronic contribution)
2.42
Polycrystalline dielectric constant εpoly
(total)
4.29
Refractive Index n
1.56
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
35
U Values
--
Pseudopotentials
VASP PAW: O Al As
Final Energy/Atom
-6.6824 eV
Corrected Energy
-42.9036 eV
-42.9036 eV = -40.0944 eV (uncorrected energy) - 2.8092 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
5.52 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
5.52 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
7.73 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
7.73 eV
derivative discontinuity
functional
GLLB-SC
2.21 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 24512

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)