material

Al2ZnSe4

ID:

mp-7907

DOI:

10.17188/1307812


Tags: Zinc dialuminium selenide Zinc dialuminium tetraselenide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.831 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.15 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
2.151 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4 [82]
Hall
I 4
Point Group
4
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
MgF2 (mp-1249) <1 0 1> <0 0 1> 0.001 158.6
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.004 285.5
BaF2 (mp-1029) <1 0 0> <0 0 1> 0.006 158.6
Y3Fe5O12 (mp-19648) <1 0 0> <0 0 1> 0.009 158.6
InP (mp-20351) <1 0 0> <0 0 1> 0.010 285.5
TbScO3 (mp-31119) <0 1 0> <1 1 0> 0.011 87.6
TbScO3 (mp-31119) <1 1 0> <0 0 1> 0.012 63.4
BaTiO3 (mp-5986) <1 1 1> <0 0 1> 0.016 285.5
C (mp-66) <1 0 0> <0 0 1> 0.016 63.4
DyScO3 (mp-31120) <1 1 0> <0 0 1> 0.018 63.4
BaTiO3 (mp-5986) <1 0 1> <1 1 1> 0.019 93.1
DyScO3 (mp-31120) <0 1 0> <1 1 0> 0.022 87.6
BaTiO3 (mp-5986) <0 0 1> <0 0 1> 0.032 31.7
PbS (mp-21276) <1 0 0> <0 0 1> 0.032 285.5
TeO2 (mp-2125) <0 1 0> <1 0 1> 0.045 69.6
GdScO3 (mp-5690) <1 1 0> <0 0 1> 0.048 63.4
Au (mp-81) <1 0 0> <0 0 1> 0.052 158.6
AlN (mp-661) <1 0 1> <1 0 0> 0.055 123.8
GdScO3 (mp-5690) <0 1 0> <1 1 0> 0.056 87.6
NaCl (mp-22862) <1 1 1> <1 1 1> 0.058 279.4
SrTiO3 (mp-4651) <1 0 0> <1 1 0> 0.066 87.6
TiO2 (mp-2657) <0 0 1> <0 0 1> 0.069 285.5
GaN (mp-804) <1 1 1> <1 0 0> 0.070 61.9
GaN (mp-804) <1 0 1> <1 0 0> 0.071 309.6
Mg (mp-153) <1 0 0> <0 0 1> 0.075 253.8
ZnO (mp-2133) <1 1 0> <1 0 1> 0.077 208.7
KTaO3 (mp-3614) <1 1 1> <0 0 1> 0.078 222.0
CdS (mp-672) <1 0 0> <0 0 1> 0.090 317.2
CsI (mp-614603) <1 1 0> <1 1 0> 0.091 87.6
NdGaO3 (mp-3196) <1 0 1> <0 0 1> 0.091 158.6
Ag (mp-124) <1 0 0> <0 0 1> 0.102 158.6
ZrO2 (mp-2858) <0 1 1> <1 1 1> 0.110 279.4
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.116 63.4
LaAlO3 (mp-2920) <0 0 1> <1 0 0> 0.120 309.6
Al (mp-134) <1 1 1> <0 0 1> 0.121 222.0
AlN (mp-661) <0 0 1> <0 0 1> 0.121 317.2
WS2 (mp-224) <1 1 0> <0 0 1> 0.125 158.6
TeO2 (mp-2125) <0 1 1> <1 0 0> 0.126 309.6
KCl (mp-23193) <1 1 0> <1 1 0> 0.126 175.1
GaN (mp-804) <1 0 0> <0 0 1> 0.133 253.8
Fe3O4 (mp-19306) <1 0 0> <0 0 1> 0.135 285.5
YAlO3 (mp-3792) <1 1 0> <0 0 1> 0.142 285.5
LaF3 (mp-905) <1 1 0> <1 0 1> 0.145 278.3
WS2 (mp-224) <1 1 1> <0 0 1> 0.146 158.6
NaCl (mp-22862) <1 0 0> <0 0 1> 0.148 31.7
DyScO3 (mp-31120) <0 0 1> <1 0 0> 0.150 61.9
GdScO3 (mp-5690) <0 1 1> <0 0 1> 0.154 222.0
TiO2 (mp-2657) <1 0 0> <0 0 1> 0.156 317.2
GaN (mp-804) <1 1 0> <1 0 1> 0.157 208.7
PbSe (mp-2201) <1 0 0> <0 0 1> 0.159 158.6
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
58 26 29 -0 -0 -1
26 58 29 -0 0 1
29 29 59 0 0 0
-0 -0 0 34 -0 0
-0 0 0 -0 34 -0
-1 1 -0 0 -0 32
Compliance Tensor Sij (10-12Pa-1)
24.6 -6.5 -8.9 0 0 0.7
-6.5 24.6 -8.9 0 0 -0.7
-8.9 -8.9 25.7 0 0 0
0 0 0 29.7 0 0
0 0 0 0 29.7 0
0.7 -0.7 0 0 0 30.9
Shear Modulus GV
26 GPa
Bulk Modulus KV
38 GPa
Shear Modulus GR
22 GPa
Bulk Modulus KR
38 GPa
Shear Modulus GVRH
24 GPa
Bulk Modulus KVRH
38 GPa
Elastic Anisotropy
0.79
Poisson's Ratio
0.24

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 -0.07042 -0.00626 0.00000
0.00000 0.00000 0.00000 0.00626 -0.07042 0.00000
-0.00496 0.00496 0.00000 0.00000 0.00000 -0.08207
Piezoelectric Modulus ‖eijmax
0.04291 C/m2
Crystallographic Direction vmax
1.00000
0.85714
1.00000

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
6.28 0.01 0.01
0.01 6.28 0.01
0.01 0.01 6.30
Dielectric Tensor εij (total)
9.16 0.02 0.03
0.02 9.16 0.04
0.03 0.04 9.21
Polycrystalline dielectric constant εpoly
(electronic contribution)
6.29
Polycrystalline dielectric constant εpoly
(total)
9.18
Refractive Index n
2.51
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
36
U Values
--
Pseudopotentials
VASP PAW: Al Zn Se
Final Energy/Atom
-4.0778 eV
Corrected Energy
-28.5444 eV
-28.5444 eV = -28.5444 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
2.58 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
2.58 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
3.68 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
3.68 eV
derivative discontinuity
functional
GLLB-SC
1.10 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 181354
  • 25636

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)