material

Al2CdTe4

ID:

mp-7909

DOI:

10.17188/1307814


Tags: Cadmium dialuminium telluride

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.465 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.75 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
1.625 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4 [82]
Hall
I 4
Point Group
4
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
LiAlO2 (mp-3427) <0 0 1> <0 0 1> 0.001 356.1
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.002 197.8
BaF2 (mp-1029) <1 0 0> <0 0 1> 0.002 39.6
Y3Fe5O12 (mp-19648) <1 0 0> <0 0 1> 0.003 158.3
Cu (mp-30) <1 1 1> <1 1 1> 0.007 113.5
BN (mp-984) <1 0 1> <1 0 0> 0.007 300.8
DyScO3 (mp-31120) <1 1 0> <0 0 1> 0.010 316.6
TbScO3 (mp-31119) <1 1 0> <0 0 1> 0.012 316.6
LiAlO2 (mp-3427) <1 0 0> <0 0 1> 0.012 197.8
Cu (mp-30) <1 1 0> <0 0 1> 0.014 277.0
Al2O3 (mp-1143) <0 0 1> <1 0 0> 0.018 300.8
ZrO2 (mp-2858) <0 0 1> <0 0 1> 0.021 356.1
AlN (mp-661) <1 0 1> <0 0 1> 0.021 356.1
InP (mp-20351) <1 0 0> <0 0 1> 0.022 316.6
LaF3 (mp-905) <0 0 1> <0 0 1> 0.023 316.6
Fe2O3 (mp-24972) <0 0 1> <1 1 1> 0.023 113.5
C (mp-66) <1 0 0> <0 0 1> 0.024 316.6
BaTiO3 (mp-5986) <1 0 0> <1 0 0> 0.028 150.4
Al (mp-134) <1 1 0> <1 0 1> 0.030 255.0
Au (mp-81) <1 0 0> <0 0 1> 0.032 158.3
Ni (mp-23) <1 0 0> <0 0 1> 0.033 158.3
InSb (mp-20012) <1 0 0> <0 0 1> 0.038 356.1
Bi2Se3 (mp-541837) <0 0 1> <0 0 1> 0.039 316.6
BaTiO3 (mp-5986) <0 0 1> <0 0 1> 0.040 79.1
GaN (mp-804) <0 0 1> <0 0 1> 0.044 316.6
CdTe (mp-406) <1 0 0> <0 0 1> 0.047 356.1
Bi2Te3 (mp-34202) <0 0 1> <0 0 1> 0.047 277.0
Mg (mp-153) <1 0 1> <1 0 0> 0.048 75.2
KTaO3 (mp-3614) <1 1 0> <1 0 1> 0.049 255.0
Te2W (mp-22693) <1 0 1> <0 0 1> 0.055 197.8
GdScO3 (mp-5690) <1 1 0> <0 0 1> 0.056 316.6
Mg (mp-153) <1 0 0> <0 0 1> 0.069 197.8
TiO2 (mp-2657) <0 0 1> <0 0 1> 0.070 197.8
Ag (mp-124) <1 0 0> <0 0 1> 0.070 158.3
Mg (mp-153) <0 0 1> <0 0 1> 0.072 277.0
ZnO (mp-2133) <1 0 1> <1 0 0> 0.074 300.8
AlN (mp-661) <1 0 0> <1 0 1> 0.081 255.0
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.081 316.6
TiO2 (mp-390) <0 0 1> <0 0 1> 0.082 356.1
TiO2 (mp-2657) <1 0 0> <0 0 1> 0.092 316.6
CdS (mp-672) <0 0 1> <0 0 1> 0.093 316.6
BaF2 (mp-1029) <1 1 0> <1 0 1> 0.099 170.0
SiC (mp-11714) <1 0 0> <1 0 1> 0.111 255.0
C (mp-48) <1 1 1> <1 0 0> 0.112 300.8
MoS2 (mp-1434) <0 0 1> <0 0 1> 0.113 277.0
WS2 (mp-224) <0 0 1> <0 0 1> 0.113 277.0
PbSe (mp-2201) <1 0 0> <0 0 1> 0.115 39.6
Te2W (mp-22693) <1 0 0> <0 0 1> 0.122 197.8
GaTe (mp-542812) <1 0 1> <1 0 0> 0.122 300.8
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.123 158.3
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
39 15 21 0 0 0
15 39 21 -0 0 -0
21 21 41 0 0 0
0 -0 0 22 -0 0
0 0 0 -0 22 0
0 -0 -0 0 0 19
Compliance Tensor Sij (10-12Pa-1)
35.6 -5.4 -15.4 0 0 -0.4
-5.4 35.6 -15.4 0 0 0.4
-15.4 -15.4 40.3 0 0 0
0 0 0 45.3 0 0
0 0 0 0 45.3 0
-0.4 0.4 0 0 0 52
Shear Modulus GV
17 GPa
Bulk Modulus KV
26 GPa
Shear Modulus GR
15 GPa
Bulk Modulus KR
26 GPa
Shear Modulus GVRH
16 GPa
Bulk Modulus KVRH
26 GPa
Elastic Anisotropy
0.74
Poisson's Ratio
0.24

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 -0.08692 0.01026 0.00000
0.00000 0.00000 0.00000 -0.01026 -0.08692 0.00000
-0.00361 0.00361 0.00000 0.00000 0.00000 -0.08925
Piezoelectric Modulus ‖eijmax
0.05063 C/m2
Crystallographic Direction vmax
1.00000
1.00000
1.00000

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
7.99 -0.00 -0.01
-0.00 7.99 -0.01
-0.01 -0.01 7.97
Dielectric Tensor εij (total)
10.74 -0.02 -0.03
-0.02 10.73 -0.04
-0.03 -0.04 10.68
Polycrystalline dielectric constant εpoly
(electronic contribution)
7.98
Polycrystalline dielectric constant εpoly
(total)
10.72
Refractive Index n
2.83
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
36
U Values
--
Pseudopotentials
VASP PAW: Al Cd Te
Final Energy/Atom
-3.4618 eV
Corrected Energy
-24.2329 eV
-24.2329 eV = -24.2329 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.92 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.92 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
2.75 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
2.75 eV
derivative discontinuity
functional
GLLB-SC
0.83 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 25640

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)