material

Al2HgTe4

ID:

mp-7910

DOI:

10.17188/1307815


Tags: Mercury dialuminium telluride

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.381 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.37 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
1.111 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4 [82]
Hall
I 4
Point Group
4
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
LiAlO2 (mp-3427) <0 0 1> <0 0 1> 0.000 355.6
BaF2 (mp-1029) <1 0 0> <0 0 1> 0.000 39.5
Y3Fe5O12 (mp-19648) <1 0 0> <0 0 1> 0.001 158.0
BN (mp-984) <1 0 1> <1 0 0> 0.004 301.0
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.004 197.5
Cu (mp-30) <1 1 1> <1 1 1> 0.005 113.5
DyScO3 (mp-31120) <1 1 0> <0 0 1> 0.011 316.0
Al2O3 (mp-1143) <0 0 1> <1 0 0> 0.014 301.0
LiAlO2 (mp-3427) <1 0 0> <0 0 1> 0.016 197.5
Cu (mp-30) <1 1 0> <0 0 1> 0.016 276.5
TbScO3 (mp-31119) <1 1 0> <0 0 1> 0.017 316.0
Fe2O3 (mp-24972) <0 0 1> <1 1 1> 0.019 113.5
AlN (mp-661) <1 0 1> <0 0 1> 0.023 355.6
Au (mp-81) <1 0 0> <0 0 1> 0.024 158.0
BaTiO3 (mp-5986) <1 0 0> <1 0 0> 0.026 150.5
ZrO2 (mp-2858) <0 0 1> <0 0 1> 0.028 355.6
LaF3 (mp-905) <0 0 1> <0 0 1> 0.029 316.0
InSb (mp-20012) <1 0 0> <0 0 1> 0.029 355.6
InP (mp-20351) <1 0 0> <0 0 1> 0.032 316.0
C (mp-66) <1 0 0> <0 0 1> 0.034 316.0
Al (mp-134) <1 1 0> <1 0 1> 0.035 255.0
GaN (mp-804) <0 0 1> <0 0 1> 0.036 316.0
CdTe (mp-406) <1 0 0> <0 0 1> 0.037 355.6
Bi2Te3 (mp-34202) <0 0 1> <0 0 1> 0.040 276.5
Ni (mp-23) <1 0 0> <0 0 1> 0.045 158.0
Bi2Se3 (mp-541837) <0 0 1> <0 0 1> 0.049 316.0
BaTiO3 (mp-5986) <0 0 1> <0 0 1> 0.053 79.0
KTaO3 (mp-3614) <1 1 0> <1 0 1> 0.055 255.0
Mg (mp-153) <1 0 1> <1 0 0> 0.056 75.2
TiO2 (mp-2657) <0 0 1> <0 0 1> 0.058 197.5
Ag (mp-124) <1 0 0> <0 0 1> 0.058 158.0
SrTiO3 (mp-4651) <1 1 0> <0 0 1> 0.068 316.0
Te2W (mp-22693) <1 0 1> <0 0 1> 0.070 197.5
GdScO3 (mp-5690) <1 1 0> <0 0 1> 0.071 316.0
ZnO (mp-2133) <1 0 1> <1 0 0> 0.077 301.0
Mg (mp-153) <1 0 0> <0 0 1> 0.084 197.5
AlN (mp-661) <1 0 0> <1 0 1> 0.085 255.0
Mg (mp-153) <0 0 1> <0 0 1> 0.087 276.5
TiO2 (mp-2657) <1 0 0> <0 0 1> 0.095 316.0
PbSe (mp-2201) <1 0 0> <0 0 1> 0.100 39.5
TiO2 (mp-390) <0 0 1> <0 0 1> 0.101 355.6
BaF2 (mp-1029) <1 1 0> <1 0 1> 0.105 170.0
SrTiO3 (mp-4651) <0 0 1> <0 0 1> 0.107 158.0
SiC (mp-11714) <1 0 0> <1 0 1> 0.108 255.0
Te2W (mp-22693) <1 0 0> <0 0 1> 0.112 197.5
CdS (mp-672) <0 0 1> <0 0 1> 0.112 316.0
C (mp-48) <1 0 1> <1 0 0> 0.112 301.0
AlN (mp-661) <0 0 1> <0 0 1> 0.119 276.5
C (mp-48) <1 1 1> <1 0 0> 0.123 301.0
MgF2 (mp-1249) <1 0 0> <0 0 1> 0.125 118.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
40 16 21 0 0 -0
16 40 21 0 0 0
21 21 41 0 0 0
0 0 0 22 0 0
0 0 0 0 22 0
-0 0 0 0 0 19
Compliance Tensor Sij (10-12Pa-1)
35.7 -6.4 -15 0 0 0.2
-6.4 35.7 -15 0 0 -0.2
-15 -15 40.1 0 0 0
0 0 0 45.5 0 0
0 0 0 0 45.5 0
0.2 -0.2 0 0 0 51.3
Shear Modulus GV
17 GPa
Bulk Modulus KV
26 GPa
Shear Modulus GR
15 GPa
Bulk Modulus KR
26 GPa
Shear Modulus GVRH
16 GPa
Bulk Modulus KVRH
26 GPa
Elastic Anisotropy
0.72
Poisson's Ratio
0.25

Piezoelectricity

Reference for tensor and properties: Methodology
Piezoelectric Tensor eij (C/m2)
0.00000 0.00000 0.00000 -0.11170 0.04633 0.00000
0.00000 0.00000 0.00000 -0.04633 -0.11170 0.00000
0.00241 -0.00241 0.00000 0.00000 0.00000 -0.08837
Piezoelectric Modulus ‖eijmax
0.06283 C/m2
Crystallographic Direction vmax
1.00000
-0.71429
0.85714

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
9.52 -0.09 -0.17
-0.09 9.48 -0.20
-0.17 -0.20 9.22
Dielectric Tensor εij (total)
13.91 -0.26 -0.47
-0.26 13.81 -0.58
-0.47 -0.58 13.06
Polycrystalline dielectric constant εpoly
(electronic contribution)
9.41
Polycrystalline dielectric constant εpoly
(total)
13.59
Refractive Index n
3.07
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
36
U Values
--
Pseudopotentials
VASP PAW: Al Te Hg
Final Energy/Atom
-3.2907 eV
Corrected Energy
-23.0350 eV
-23.0350 eV = -23.0350 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.33 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.33 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.93 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.93 eV
derivative discontinuity
functional
GLLB-SC
0.60 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 25641

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)