material

LiNbS2

ID:

mp-7936

DOI:

10.17188/1307840


Tags: Lithium niobium sulfide (.7/1/2)

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-1.635 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
4.24 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.714 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P63/mmc [194]
Hall
-P 6c 2c
Point Group
6/mmm
Crystal System
hexagonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
CaF2 (mp-2741) <1 1 1> <0 0 1> 0.007 158.6
LiGaO2 (mp-5854) <0 1 0> <1 0 0> 0.014 131.4
PbS (mp-21276) <1 1 1> <0 0 1> 0.021 188.4
GaP (mp-2490) <1 1 1> <0 0 1> 0.028 158.6
Ag (mp-124) <1 1 1> <0 0 1> 0.039 29.7
InSb (mp-20012) <1 1 1> <0 0 1> 0.040 307.3
LiGaO2 (mp-5854) <0 1 1> <0 0 1> 0.040 347.0
BN (mp-984) <1 0 1> <1 0 0> 0.050 262.8
Cu (mp-30) <1 0 0> <0 0 1> 0.053 208.2
CdTe (mp-406) <1 1 1> <0 0 1> 0.053 307.3
SiC (mp-11714) <1 1 0> <1 0 1> 0.053 269.5
SiC (mp-11714) <1 1 1> <1 0 0> 0.061 219.0
Ag (mp-124) <1 0 0> <0 0 1> 0.074 188.4
Bi2Te3 (mp-34202) <0 0 1> <0 0 1> 0.084 69.4
Fe2O3 (mp-24972) <0 0 1> <0 0 1> 0.085 69.4
LiAlO2 (mp-3427) <1 0 0> <0 0 1> 0.091 366.8
C (mp-48) <0 0 1> <0 0 1> 0.093 69.4
TiO2 (mp-390) <1 1 0> <1 0 0> 0.102 262.8
Au (mp-81) <1 1 1> <0 0 1> 0.106 29.7
AlN (mp-661) <1 0 0> <0 0 1> 0.116 247.9
AlN (mp-661) <1 1 1> <0 0 1> 0.126 168.5
BaF2 (mp-1029) <1 1 1> <0 0 1> 0.131 69.4
SiO2 (mp-6930) <1 0 0> <0 0 1> 0.142 247.9
GdScO3 (mp-5690) <1 0 1> <1 1 0> 0.145 227.6
LiTaO3 (mp-3666) <0 0 1> <0 0 1> 0.145 69.4
Cu (mp-30) <1 1 0> <0 0 1> 0.157 148.7
Au (mp-81) <1 0 0> <0 0 1> 0.159 188.4
TiO2 (mp-2657) <1 0 0> <0 0 1> 0.176 109.1
CaF2 (mp-2741) <1 1 0> <0 0 1> 0.177 347.0
MgF2 (mp-1249) <1 0 1> <0 0 1> 0.179 267.7
YVO4 (mp-19133) <1 1 0> <1 0 0> 0.181 131.4
LiF (mp-1138) <1 1 0> <0 0 1> 0.188 119.0
CdWO4 (mp-19387) <1 1 0> <0 0 1> 0.193 247.9
NdGaO3 (mp-3196) <0 0 1> <0 0 1> 0.201 277.6
BaTiO3 (mp-5986) <0 0 1> <0 0 1> 0.202 178.5
GaP (mp-2490) <1 1 0> <0 0 1> 0.216 347.0
SiC (mp-7631) <1 0 1> <0 0 1> 0.222 188.4
BN (mp-984) <1 1 1> <0 0 1> 0.223 267.7
PbSe (mp-2201) <1 1 0> <0 0 1> 0.229 277.6
C (mp-66) <1 0 0> <0 0 1> 0.230 208.2
Ge (mp-32) <1 1 0> <0 0 1> 0.240 237.9
Si (mp-149) <1 1 1> <0 0 1> 0.249 158.6
TiO2 (mp-2657) <1 1 0> <1 1 1> 0.254 76.5
KCl (mp-23193) <1 1 1> <0 0 1> 0.260 69.4
Cu (mp-30) <1 1 1> <0 0 1> 0.260 69.4
CeO2 (mp-20194) <1 1 1> <0 0 1> 0.261 158.6
GaN (mp-804) <0 0 1> <0 0 1> 0.268 119.0
GaSb (mp-1156) <1 1 0> <0 0 1> 0.268 277.6
TbScO3 (mp-31119) <1 0 1> <1 1 0> 0.269 227.6
Te2Mo (mp-602) <0 0 1> <0 0 1> 0.270 128.9
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
189 52 36 0 0 0
52 189 36 0 0 0
36 36 132 0 0 0
0 0 0 46 0 0
0 0 0 0 46 0
0 0 0 0 0 69
Compliance Tensor Sij (10-12Pa-1)
5.9 -1.4 -1.2 0 0 0
-1.4 5.9 -1.2 0 0 0
-1.2 -1.2 8.3 0 0 0
0 0 0 21.5 0 0
0 0 0 0 21.5 0
0 0 0 0 0 14.6
Shear Modulus GV
58 GPa
Bulk Modulus KV
84 GPa
Shear Modulus GR
56 GPa
Bulk Modulus KR
81 GPa
Shear Modulus GVRH
57 GPa
Bulk Modulus KVRH
83 GPa
Elastic Anisotropy
0.24
Poisson's Ratio
0.22

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
14.55 0.00 0.00
0.00 14.55 0.00
0.00 0.00 6.92
Dielectric Tensor εij (total)
17.03 0.00 -0.00
0.00 17.03 -0.00
-0.00 -0.00 12.39
Polycrystalline dielectric constant εpoly
(electronic contribution)
12.01
Polycrystalline dielectric constant εpoly
(total)
15.48
Refractive Index n
3.46
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
28
U Values
--
Pseudopotentials
VASP PAW: Li_sv S Nb_pv
Final Energy/Atom
-6.3738 eV
Corrected Energy
-53.6440 eV
-53.6440 eV = -50.9902 eV (uncorrected energy) - 2.6538 eV (MP Anion Correction)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
0.88 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.58 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.17 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.87 eV
derivative discontinuity
functional
GLLB-SC
0.29 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 26284

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)