Final Magnetic Moment0.002 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom-2.538 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.045 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density2.50 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToVPO5 + LiPO3 + VP2O7 + O2 |
Band Gap1.129 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinC2 [5] |
HallC 2y |
Point Group2 |
Crystal Systemmonoclinic |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
GaAs (mp-2534) | <1 1 0> | <1 0 0> | 139.1 |
DyScO3 (mp-31120) | <1 0 1> | <0 0 1> | 164.7 |
ZnSe (mp-1190) | <1 1 0> | <1 0 0> | 139.1 |
KTaO3 (mp-3614) | <1 1 0> | <1 0 0> | 139.1 |
YVO4 (mp-19133) | <1 0 1> | <1 0 0> | 139.1 |
Al (mp-134) | <1 1 0> | <1 0 0> | 139.1 |
GdScO3 (mp-5690) | <0 1 1> | <0 0 1> | 164.7 |
GdScO3 (mp-5690) | <1 0 1> | <0 0 1> | 164.7 |
TbScO3 (mp-31119) | <1 0 1> | <0 0 1> | 164.7 |
Ni (mp-23) | <1 1 0> | <1 0 0> | 139.1 |
NaCl (mp-22862) | <1 1 0> | <1 0 0> | 139.1 |
NdGaO3 (mp-3196) | <1 0 1> | <0 0 1> | 164.7 |
WS2 (mp-224) | <1 0 0> | <1 0 0> | 139.1 |
SrTiO3 (mp-4651) | <1 0 1> | <0 0 1> | 164.7 |
Ge (mp-32) | <1 1 0> | <1 0 0> | 139.1 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
CrP2O7 (mvc-14928) | 0.4506 | 0.093 | 3 |
Cr(PO3)3 (mp-31690) | 0.4341 | 0.132 | 3 |
CrP2O7 (mp-540267) | 0.4376 | 0.093 | 3 |
Cr(PO3)3 (mp-694576) | 0.4446 | 0.132 | 3 |
NiP2O7 (mp-540273) | 0.4447 | 0.227 | 3 |
Li3V3P8O29 (mp-863866) | 0.1441 | 0.043 | 4 |
Li3V3P8O29 (mp-766731) | 0.1081 | 0.044 | 4 |
Li3V3P8O29 (mp-865189) | 0.1371 | 0.042 | 4 |
Li3V3P8O29 (mp-863876) | 0.1463 | 0.046 | 4 |
Li3V3P8O29 (mp-761942) | 0.1644 | 0.042 | 4 |
Cr19O48 (mp-850874) | 0.4671 | 0.167 | 2 |
V5O12 (mp-776915) | 0.6952 | 0.032 | 2 |
Cr19O48 (mp-780521) | 0.4995 | 0.085 | 2 |
Cr5O12 (mp-19575) | 0.6552 | 0.142 | 2 |
LiBS4(ClO3)4 (mp-555090) | 0.5944 | 0.005 | 5 |
LiSn2P4H3O16 (mp-754500) | 0.5305 | 0.061 | 5 |
LiMnV(PO4)3 (mp-770057) | 0.6277 | 0.130 | 5 |
SnP4H8N2O13 (mp-603633) | 0.4689 | 0.010 | 5 |
TiP4H8N2O13 (mp-603612) | 0.5356 | 0.026 | 5 |
VBP2H5NO9 (mp-25798) | 0.6133 | 0.000 | 6 |
RbScBP2HO9 (mp-23809) | 0.6302 | 0.000 | 6 |
CsAlBP2HO9 (mp-542129) | 0.5863 | 0.000 | 6 |
RbAlBP2HO9 (mp-542130) | 0.5835 | 0.000 | 6 |
NaMgAl3Si8(HO6)4 (mp-1094103) | 0.4936 | 0.025 | 6 |
Al2P2H8C2NO8F (mp-708964) | 0.6298 | 0.050 | 7 |
Run TypeGGA+U |
Energy Cutoff520 eV |
# of K-pointsNone |
U ValuesV: 3.25 eV |
PseudopotentialsVASP PAW: Li_sv V_pv P O |
Final Energy/Atom-7.0584 eV |
Corrected Energy-657.8495 eV
-657.8495 eV = -607.0247 eV (uncorrected energy) - 40.7328 eV (MP Anion Correction) - 10.0920 eV (MP Advanced Correction)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)