material

CoRe3

ID:

mp-865960

DOI:

10.17188/1311133


Material Details

Final Magnetic Moment
-0.852 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
FM
Formation Energy / Atom
-0.061 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
18.47 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P63/mmc [194]
Hall
-P 6c 2c
Point Group
6/mmm
Crystal System
hexagonal
We have not yet calculated a detailed bandstructure for this material
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
LiTaO3 (mp-3666) <0 0 1> <0 0 1> 0.002 305.7
AlN (mp-661) <0 0 1> <0 0 1> 0.006 25.5
ZnO (mp-2133) <0 0 1> <0 0 1> 0.006 178.3
InSb (mp-20012) <1 1 1> <0 0 1> 0.014 76.4
CdTe (mp-406) <1 1 1> <0 0 1> 0.029 76.4
BN (mp-984) <1 1 1> <1 1 0> 0.030 204.7
Te2Mo (mp-602) <0 0 1> <0 0 1> 0.036 76.4
LaAlO3 (mp-2920) <0 0 1> <0 0 1> 0.036 25.5
LiNbO3 (mp-3731) <0 0 1> <0 0 1> 0.037 305.7
MgF2 (mp-1249) <1 0 0> <1 1 1> 0.051 144.7
Ga2O3 (mp-886) <1 1 -1> <1 0 1> 0.083 243.3
KTaO3 (mp-3614) <1 0 0> <1 0 1> 0.118 243.3
DyScO3 (mp-31120) <0 1 1> <1 0 0> 0.139 212.8
LiGaO2 (mp-5854) <0 0 1> <1 0 1> 0.147 139.0
NdGaO3 (mp-3196) <0 0 1> <0 0 1> 0.149 152.9
LaAlO3 (mp-2920) <1 0 1> <0 0 1> 0.153 76.4
LaAlO3 (mp-2920) <1 1 1> <0 0 1> 0.165 127.4
Al (mp-134) <1 0 0> <1 0 1> 0.172 243.3
BaTiO3 (mp-5986) <1 0 0> <1 1 1> 0.173 289.4
YAlO3 (mp-3792) <1 1 1> <1 0 0> 0.179 189.1
LaAlO3 (mp-2920) <1 1 0> <1 1 0> 0.183 122.8
InAs (mp-20305) <1 1 1> <1 1 0> 0.186 327.6
InAs (mp-20305) <1 0 0> <1 0 0> 0.188 189.1
CdSe (mp-2691) <1 1 0> <1 1 0> 0.214 163.8
ZnTe (mp-2176) <1 1 1> <1 1 0> 0.225 327.6
ZnTe (mp-2176) <1 0 0> <1 0 0> 0.228 189.1
GaSb (mp-1156) <1 1 0> <1 1 0> 0.228 163.8
CeO2 (mp-20194) <1 0 0> <1 0 0> 0.239 118.2
KCl (mp-23193) <1 0 0> <1 0 1> 0.245 243.3
KP(HO2)2 (mp-23959) <1 1 0> <1 0 1> 0.245 139.0
LiGaO2 (mp-5854) <0 1 1> <1 0 0> 0.247 260.1
YAlO3 (mp-3792) <1 0 1> <1 0 1> 0.254 347.6
BaTiO3 (mp-5986) <1 1 1> <1 1 1> 0.255 144.7
SiC (mp-8062) <1 1 0> <1 1 0> 0.257 81.9
Si (mp-149) <1 0 0> <1 0 0> 0.258 118.2
TbScO3 (mp-31119) <0 0 1> <1 0 0> 0.264 94.6
PbSe (mp-2201) <1 1 0> <1 1 0> 0.265 163.8
TePb (mp-19717) <1 1 0> <1 1 0> 0.275 122.8
MgF2 (mp-1249) <0 0 1> <0 0 1> 0.292 178.3
CdWO4 (mp-19387) <0 1 0> <1 0 0> 0.293 212.8
DyScO3 (mp-31120) <0 0 1> <1 0 0> 0.305 94.6
SiC (mp-7631) <1 1 1> <1 0 0> 0.314 165.5
GdScO3 (mp-5690) <1 1 1> <1 1 0> 0.316 286.6
ZnTe (mp-2176) <1 1 0> <1 1 0> 0.321 163.8
BN (mp-984) <1 0 0> <1 0 1> 0.340 312.8
SiC (mp-8062) <1 0 0> <1 0 0> 0.352 94.6
InAs (mp-20305) <1 1 0> <1 1 0> 0.352 163.8
TbScO3 (mp-31119) <0 1 1> <1 0 0> 0.365 212.8
BaTiO3 (mp-5986) <0 0 1> <1 0 1> 0.367 243.3
LiGaO2 (mp-5854) <1 0 0> <1 0 0> 0.408 70.9
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
549 251 199 0 0 0
251 549 199 0 0 0
199 199 645 -0 -0 0
-0 -0 -0 151 0 0
-0 0 -0 0 151 -0
0 0 0 0 -0 149
Compliance Tensor Sij (10-12Pa-1)
2.4 -0.9 -0.5 0 0 0
-0.9 2.4 -0.5 0 0 0
-0.5 -0.5 1.8 0 0 0
0 0 0 6.6 0 0
0 0 0 0 6.6 0
0 0 0 0 0 6.7
Shear Modulus GV
163 GPa
Bulk Modulus KV
338 GPa
Shear Modulus GR
160 GPa
Bulk Modulus KR
338 GPa
Shear Modulus GVRH
161 GPa
Bulk Modulus KVRH
338 GPa
Elastic Anisotropy
0.11
Poisson's Ratio
0.29

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
28
U Values
--
Pseudopotentials
VASP PAW: Co Re_pv
Final Energy/Atom
-11.1708 eV
Corrected Energy
-89.3663 eV
-89.3663 eV = -89.3663 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
Submitted by

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)