material

Ti3Bi

ID:

mp-866201

DOI:

10.17188/1311464


Material Details

Final Magnetic Moment
0.976 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
FM
Formation Energy / Atom
-0.087 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.010 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
7.77 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Ti2Bi + Ti
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P63/mmc [194]
Hall
-P 6c 2c
Point Group
6/mmm
Crystal System
hexagonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
YVO4 (mp-19133) <0 0 1> <0 0 1> -1.282 156.0
YAlO3 (mp-3792) <1 1 0> <0 0 1> -1.277 280.9
Cu (mp-30) <1 0 0> <0 0 1> -1.275 156.0
ZrO2 (mp-2858) <1 0 -1> <0 0 1> -1.069 218.5
C (mp-66) <1 0 0> <0 0 1> -1.055 156.0
Fe2O3 (mp-24972) <1 0 0> <0 0 1> -1.039 280.9
DyScO3 (mp-31120) <0 1 1> <1 0 1> -0.852 212.9
SiC (mp-11714) <1 1 1> <0 0 1> -0.846 218.5
GaN (mp-804) <1 1 1> <1 0 1> -0.764 340.7
Ga2O3 (mp-886) <1 1 0> <0 0 1> -0.702 218.5
CaCO3 (mp-3953) <1 0 0> <1 1 1> -0.566 177.3
ZrO2 (mp-2858) <0 1 0> <0 0 1> -0.516 249.7
LiGaO2 (mp-5854) <0 0 1> <1 0 1> -0.504 85.2
CdWO4 (mp-19387) <0 1 0> <1 0 1> -0.460 212.9
GaN (mp-804) <0 0 1> <1 0 1> -0.447 127.7
LiF (mp-1138) <1 0 0> <0 0 1> -0.446 249.7
YAlO3 (mp-3792) <1 0 1> <1 1 1> -0.385 295.5
GaP (mp-2490) <1 0 0> <1 0 1> -0.263 212.9
CaF2 (mp-2741) <1 0 0> <1 0 1> -0.260 212.9
MoS2 (mp-1434) <1 0 0> <1 1 0> -0.244 200.7
SiO2 (mp-6930) <1 1 0> <1 0 1> -0.239 340.7
NdGaO3 (mp-3196) <1 1 1> <1 1 0> -0.232 200.7
KP(HO2)2 (mp-23959) <0 0 1> <1 1 0> -0.232 150.5
TiO2 (mp-2657) <1 0 0> <0 0 1> -0.230 218.5
SrTiO3 (mp-4651) <1 0 0> <1 1 1> -0.230 177.3
AlN (mp-661) <1 0 1> <0 0 1> -0.194 124.8
Te2Mo (mp-602) <1 1 1> <0 0 1> -0.186 93.6
TiO2 (mp-390) <1 1 1> <0 0 1> -0.180 218.5
Al (mp-134) <1 0 0> <0 0 1> -0.178 249.7
TiO2 (mp-2657) <1 1 1> <0 0 1> -0.174 343.3
TiO2 (mp-2657) <1 1 0> <0 0 1> -0.156 156.0
Si (mp-149) <1 0 0> <1 0 1> -0.136 212.9
CeO2 (mp-20194) <1 0 0> <1 0 1> -0.128 212.9
Fe2O3 (mp-24972) <1 0 1> <1 1 1> -0.123 295.5
NaCl (mp-22862) <1 1 0> <1 1 1> -0.122 177.3
Mg (mp-153) <0 0 1> <1 1 0> -0.106 200.7
SiC (mp-11714) <1 0 0> <1 1 0> -0.106 250.9
MoSe2 (mp-1634) <1 1 0> <1 1 1> -0.097 177.3
LiAlO2 (mp-3427) <0 0 1> <0 0 1> -0.091 218.5
MgF2 (mp-1249) <1 0 1> <1 1 1> -0.089 236.4
LiGaO2 (mp-5854) <1 1 0> <1 0 0> -0.071 144.9
SiC (mp-7631) <1 0 0> <1 1 1> -0.068 236.4
BN (mp-984) <0 0 1> <1 0 1> -0.060 170.3
WS2 (mp-224) <1 1 1> <1 0 0> -0.058 318.7
TiO2 (mp-390) <1 0 0> <1 1 1> -0.056 295.5
SiC (mp-8062) <1 1 0> <1 1 0> -0.052 301.1
TeO2 (mp-2125) <0 0 1> <1 0 0> -0.036 318.7
Ge(Bi3O5)4 (mp-23352) <1 1 0> <1 1 0> -0.035 150.5
Al2O3 (mp-1143) <1 0 0> <1 1 0> -0.034 250.9
Cu (mp-30) <1 1 0> <1 1 0> -0.034 150.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
33 201 74 0 0 0
201 33 74 0 0 0
74 74 151 0 0 0
0 0 0 -8 -0 0
0 0 0 -0 -8 0
0 0 0 0 0 -84
Compliance Tensor Sij (10-12Pa-1)
0.1 6.1 -3 0 0 0
6.1 0.1 -3 0 0 0
-3 -3 9.5 0 0 0
0 0 0 -117.8 0 0
0 0 0 0 -117.8 0
0 0 0 0 0 -11.9
Shear Modulus GV
-29 GPa
Bulk Modulus KV
102 GPa
Shear Modulus GR
-21 GPa
Bulk Modulus KR
101 GPa
Shear Modulus GVRH
-25 GPa
Bulk Modulus KVRH
102 GPa
Elastic Anisotropy
1.77
Poisson's Ratio
0.63

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
28
U Values
--
Pseudopotentials
VASP PAW: Ti_pv Bi
Final Energy/Atom
-6.9817 eV
Corrected Energy
-55.8536 eV
-55.8536 eV = -55.8536 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
Submitted by

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)