material

Tc

ID:

mp-867351

DOI:

10.17188/1312017


Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
0.010 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.010 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
11.14 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Tc
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P63/mmc [194]
Hall
-P 6c 2c
Point Group
6/mmm
Crystal System
hexagonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
BaF2 (mp-1029) <1 1 1> <0 0 1> 0.000 205.2
LiNbO3 (mp-3731) <0 0 1> <0 0 1> 0.000 165.5
WS2 (mp-224) <0 0 1> <0 0 1> 0.001 26.5
MoS2 (mp-1434) <0 0 1> <0 0 1> 0.001 26.5
MgO (mp-1265) <1 1 1> <0 0 1> 0.005 125.8
MoSe2 (mp-1634) <0 0 1> <0 0 1> 0.012 86.0
WSe2 (mp-1821) <0 0 1> <0 0 1> 0.012 86.0
Fe3O4 (mp-19306) <1 1 1> <0 0 1> 0.014 125.8
YAlO3 (mp-3792) <1 0 1> <1 1 1> 0.024 342.3
Mg (mp-153) <0 0 1> <0 0 1> 0.045 26.5
CdWO4 (mp-19387) <1 0 0> <0 0 1> 0.049 125.8
GdScO3 (mp-5690) <0 1 0> <0 0 1> 0.057 132.4
GaTe (mp-542812) <1 0 0> <0 0 1> 0.059 178.7
LiTaO3 (mp-3666) <0 0 1> <0 0 1> 0.062 165.5
WS2 (mp-224) <1 1 1> <0 0 1> 0.062 79.4
Au (mp-81) <1 0 0> <0 0 1> 0.067 139.0
GaP (mp-2490) <1 0 0> <0 0 1> 0.071 211.8
YVO4 (mp-19133) <1 0 1> <0 0 1> 0.072 139.0
LiF (mp-1138) <1 1 1> <0 0 1> 0.079 86.0
Al2O3 (mp-1143) <0 0 1> <0 0 1> 0.080 19.9
Ag (mp-124) <1 0 0> <0 0 1> 0.084 139.0
CdS (mp-672) <0 0 1> <0 0 1> 0.096 46.3
LiAlO2 (mp-3427) <1 0 1> <1 0 0> 0.102 170.8
TiO2 (mp-2657) <1 1 1> <1 0 0> 0.107 146.4
C (mp-48) <1 1 0> <1 1 1> 0.110 299.5
CaF2 (mp-2741) <1 0 0> <0 0 1> 0.117 211.8
SiO2 (mp-6930) <1 0 0> <1 0 0> 0.121 195.2
Mg (mp-153) <1 0 1> <1 1 0> 0.123 169.1
Ni (mp-23) <1 1 1> <0 0 1> 0.133 86.0
BN (mp-984) <1 0 0> <1 1 1> 0.141 213.9
CeO2 (mp-20194) <1 1 1> <0 0 1> 0.144 205.2
MoSe2 (mp-1634) <1 0 1> <0 0 1> 0.151 311.1
Si (mp-149) <1 1 1> <0 0 1> 0.159 205.2
CsI (mp-614603) <1 1 1> <0 0 1> 0.171 105.9
LiGaO2 (mp-5854) <1 0 1> <0 0 1> 0.172 317.7
Fe2O3 (mp-24972) <1 1 0> <1 0 0> 0.177 122.0
Fe2O3 (mp-24972) <1 0 0> <0 0 1> 0.178 211.8
TbScO3 (mp-31119) <0 1 0> <0 0 1> 0.181 132.4
NdGaO3 (mp-3196) <0 1 1> <0 0 1> 0.190 52.9
Al2O3 (mp-1143) <1 1 1> <1 0 0> 0.191 219.6
Al2O3 (mp-1143) <1 0 0> <1 1 0> 0.194 126.8
Al2O3 (mp-1143) <1 1 0> <1 0 0> 0.195 219.6
MoSe2 (mp-1634) <1 0 0> <0 0 1> 0.197 311.1
Te2Mo (mp-602) <1 0 0> <0 0 1> 0.200 218.4
MoSe2 (mp-1634) <1 1 0> <1 0 1> 0.212 177.0
AlN (mp-661) <1 0 0> <1 0 0> 0.223 170.8
LaF3 (mp-905) <1 1 0> <0 0 1> 0.223 92.7
TePb (mp-19717) <1 0 0> <1 0 1> 0.229 303.4
SiC (mp-8062) <1 1 0> <1 0 0> 0.248 219.6
Mg (mp-153) <1 1 0> <1 0 0> 0.254 146.4
Up to 50 entries displayed.
minimal coincident interface area.

Surfaces

Reference for surface energies and properties: Periodic Table of Wulff Shapes
Miller Indices
(hklm)
Surface Energy
(J/m2, eV/Å2)
Area Fraction Structure
(CIF)
(0001) 2.29, 0.14 0.24
(1010) 2.56, 0.16 0.26
(1012) 2.75, 0.17 0.37
(1011) 2.76, 0.17 0.00
(2130) 2.77, 0.17 0.05
(1120) 2.80, 0.17 0.02
(2131) 2.84, 0.18 0.00
(2241) 2.85, 0.18 0.00
(1121) 2.88, 0.18 0.00
(2132) 2.89, 0.18 0.01
(2021) 2.90, 0.18 0.00
(2112) 2.91, 0.18 0.05

Average (area-fraction-weighted) surface energy:
     γ = 2.60, 0.16

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
484 229 187 0 0 0
229 484 187 0 0 0
187 187 548 0 0 0
0 0 0 139 0 0
0 0 0 0 139 0
0 0 0 0 0 128
Compliance Tensor Sij (10-12Pa-1)
2.8 -1.1 -0.6 0 0 0
-1.1 2.8 -0.6 0 0 0
-0.6 -0.6 2.2 0 0 0
0 0 0 7.2 0 0
0 0 0 0 7.2 0
0 0 0 0 0 7.8
Shear Modulus GV
142 GPa
Bulk Modulus KV
302 GPa
Shear Modulus GR
140 GPa
Bulk Modulus KR
302 GPa
Shear Modulus GVRH
141 GPa
Bulk Modulus KVRH
302 GPa
Elastic Anisotropy
0.07
Poisson's Ratio
0.30

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
36
U Values
--
Pseudopotentials
VASP PAW: Tc_pv
Final Energy/Atom
-10.3490 eV
Corrected Energy
-41.3959 eV
-41.3959 eV = -41.3959 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
Submitted by

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)